基于一致性点漂移的智能车视觉目标跟踪方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH89

基金项目:

国家自然科学基金(62073052)、重庆市自然科学基金(cstc2021jcyjmsxmX0373)、重庆市教委重点研究项目(KJZD-K202200603)资助


Visual multi-object tracking method for intelligent vehicle based on coherent point drift
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能车未知运动下的多目标跟踪问题,提出一种基于一致性点漂移的视觉多目标跟踪方法。 首先利用一致性点漂 移算法构建智能车未知运动模型,得到局部目标状态变换关系;其次建立一种基于外观相似性和运动一致性的自适应特征融合 函数;最后通过匈牙利算法求解轨迹与检测的对应关系,以实现面向智能车的鲁棒数据关联。 实验结果表明,与现有的 5 种主 流目标跟踪方法对比,所提方法在多个指标方面具有更好的效果,相较于结构约束(SCEA)算法,在 KITTI 数据集中较大运动场 景下,所提方法多目标跟踪准确率提高了 6. 3% ,在实拍实验数据下,所提方法多目标跟踪准确率提高了 7. 3% ,证明该算法能 在智能车未知运动下有效的进行多目标跟踪。

    Abstract:

    To address the problem of multi-object tracking under the unknown motion of the intelligent vehicle, a visual multi-object tracking method is proposed, which is based on the coherent point drift. First, the unknown motion model of the intelligent vehicle is formulated by the coherent point drift algorithm. The local object state transformation relationship is achieved. Secondly, an adaptive feature fusion function is constructed, which is based on appearance similarity and motion consistency. Therefore, the Hungarian algorithm is utilized to solve the correspondence between the track and the detection. Finally, the robust data association for the intelligent vehicle is realized. Compared with the current five mainstream multi-object tracking methods, results show that the proposed algorithm has better results in multiple indicators. Compared with the SCEA algorithm, the multi-object tracking accuracy of the proposed method is increased by 6. 3% in the large motion scene of the KITTI dataset. Under the real-shot experimental data, the multi-object tracking accuracy of the proposed method is increased by 7. 3% , which can effectively perform multi-object tracking under the unknown motion of the intelligent vehicle.

    参考文献
    相似文献
    引证文献
引用本文

朱 浩,李 鑫.基于一致性点漂移的智能车视觉目标跟踪方法[J].仪器仪表学报,2022,43(10):195-204

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码