基于深度学习的机制砂级配在线检测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH741

基金项目:

福建省高校产学合作项目(2020H6012,2021H6029)、福建省科技重大专项专题(2020YZ017022)项目资助


On-line detection research on manufactured sand grading based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机制砂的级配和细度模数是工业制砂中重要的质量指标,针对机制砂级配的传统检测方法无法解决在实际工况下在线 检测的问题,结合实验研究提出了一种基于深度学习的机制砂级配在线检测方法。 首先采集传送带上的堆叠机制砂图像,其次 经过卷积神经网络对机制砂图像实例分割,最后经过图像处理技术在线计算机制砂级配和细度模数。 对比实验结果表明,Mask R-CNN 实例分割模型在机制砂堆叠场景下对完整颗粒能有效分割;采用等效椭圆 Feret 短径作为等效粒径参数,面积级配作为 级配表征参数;在线检测两组细度模数机制砂的最大重复性误差为 0. 03 和 0. 05,粒径区间最大重复性误差为 2. 97% 和 3. 43% ; 相较于传统检测方法,该检测方法具备可行性,且能够满足在工业制砂中在线检测的要求。

    Abstract:

    The gradation and fineness modulus of manufactured sand are important quality indicators in industrial sand production. To solve the problem that the traditional method of grading detection of manufactured sand cannot be implemented online under the actual working condition. This article combines experimental research to propose an online detection method for manufactured sand grading based on deep learning. Firstly, the images of the stacked manufactured sand on the conveyor belt are collected. Then, the manufactured sand images are segmented by the convolution neural network ( CNN) . Finally, the gradation and fineness modulus of manufactured sand is computerized online by the image processing technology. Comparative experimental results show that the mask R-CNN instance segmentation model can effectively segment intact particles in the manufactured sand stacking scenario. The equivalent elliptical Feret short diameter is used as the equivalent particle size parameter and the area gradation is used as the gradation characterization parameter. The maximum repeatability error values of online detection of two groups of fineness modulus manufactured sand are 0. 03 and 0. 05. The maximum repeatability error values of particle size interval are 2. 97% and 3. 43% . Compared with traditional detection methods, this method is feasible and can meet the requirements of online detection in industrial sand production.

    参考文献
    相似文献
    引证文献
引用本文

黄斐智,房怀英,杨建红,潘维俊.基于深度学习的机制砂级配在线检测研究[J].仪器仪表学报,2022,43(10):165-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码