基于 sEMG 和肌肉骨骼模型的手指 多关节力矩耦合分析
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH911. 72

基金项目:

国家自然科学基金区域联合项目(U20A20192)、国家自然科学基金项目(62076216)、河北省自然科学基金重点项目(F2022203079)资助


Multi-joint torque coupling analysis of fingers based on sEMG and musculoskeletal model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手指内部力矩受表面肌电信号、肌力、手部姿态等因素影响而无法直接获取,为了实时且准确地获取手指各关节力矩以 及耦合力矩并应用于手部康复机器人的交互控制中,提出了一种基于表面肌电信号和肌肉骨骼模型的手指多关节力矩和耦合 力矩分析与实时获取方法。 首先设计了自适应手指关节角度采集系统,通过实验同步采集指浅屈肌与指伸肌的肌电信号以及 手指各关节的角度数据,建立手指多关节力矩模型,从而获取手指各关节力矩。 然后建立手指 D-H 模型,结合虚功原理获取手 指的耦合力矩。 最后,辨识了手指多关节力矩模型的参数,并通过 OpenSim 软件获取了仿真力矩。 计算力矩与仿真力矩的对比 结果显示:4 名被试 3 个关节力矩的均方根误差分别为 0. 156 7、0. 097 425、0. 084 95,证明了该方法能够实时并准确的获取手指 各关节力矩和耦合力矩,能够满足手部康复机器人交互控制准确性和实时性的需求。

    Abstract:

    The internal torque of fingers is affected by surface electromyography ( sEMG) signals, muscle strength, hand posture and other factors, which cannot be obtained directly. To obtain the torques and coupling torque of finger joints in real time as well as accurately, and apply them to the interactive control of hand rehabilitation robots, a method for analyzing and acquiring the torques and coupling torque of finger joints based on sEMG and musculoskeletal model is proposed. Firstly, an adaptive finger joints angle acquisition system is designed. Through experiments, the sEMG signals of the flexor digitorum superficialis ( FDS) and the extensor digitorum communis (EDC) and the angle data of each finger joint are collected simultaneously. The torque model of the finger joints is formulated and the torque of each joint of the fingers is obtained. Then, the finger D-H model is established, and the coupling torque of the finger joints is obtained by combining the principle of virtual work. Finally, the parameters of the multi-joint torque model are determined, and the simulated torque is achieved through OpenSim software. By comparing the results of the calculated torques and the simulated torques, the root mean square error of three joint torques of the four subjects are 0. 156 7, 0. 097 425 and 0. 084 95, respectively. Results show that the method can obtain the torque and coupling torque of each joint of the finger in real time and accurately, which can meet the requirements of accuracy and real-time interactive control of hand rehabilitation robots.

    参考文献
    相似文献
    引证文献
引用本文

谢 平,肖俊明,于金须,张立杰,杜义浩.基于 sEMG 和肌肉骨骼模型的手指 多关节力矩耦合分析[J].仪器仪表学报,2022,43(9):266-275

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码