摘要:针对实际工程中因故障样本数据稀少而导致模型识别准确率不高的问题,提出了一种基于自校正卷积神经网络( SCCNN)的滚动轴承故障诊断模型,并将其应用于小样本条件下的故障识别研究。 首先,为减少不同信号的数据分布差异,在每个 卷积层后添加 BN 算法;其次,利用自校正卷积学习信号的多尺度特征,提高模型获取有用故障特征的能力;然后,引入通道自 注意力机制,建立通道特征信息之间的相关性,用于突出故障特征并抑制数据过拟合;再将少量训练样本输入到模型中进行学 习;最后,将各类不同条件下的故障信号输入到训练好的 SC-CNN 模型进行识别分类,并在两个数据集上进行实验验证。 结果 表明,所提模型在信噪比为-4 dB 的强噪声环境下,识别准确率分别为 98. 64% 和 99. 83% ,在变工况条件下,识别准确率分别为 94. 37% 和 99. 64% ,验证了 SC-CNN 模型在小样本条件下具有较强的鲁棒性和泛化性能。