基于特征融合度量学习的高压断路器机械故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM561 TH17

基金项目:

国家自然科学基金重点项目(51937009)资助


Mechanical fault diagnosis for high voltage circuit breaker via a novel feature fusion metric learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据驱动的深度学习方法在高压断路器机械故障诊断中取得了一定的成效,然而这些方法实现优异性能的前提是可获 取海量训练样本,在现场数据匮乏场景下其诊断性能明显下降。 为此,提出了一种新颖的特征融合度量学习模型用于现场小样 本高压断路器机械故障诊断。 首先构建了特征融合卷积神经网络,有效提升了可鉴别特征提取能力。 然后以 K 近邻算法作为 度量学习器实现小样本数据的匹配和分类。 最后通过改进中心损失进一步提升特征表示的分辨能力,并通过情景训练从实验 室构建的大样本集中学习可迁移知识。 实验结果表明,本文方法在每类支持集样本数为 5 时便可达到 94. 58% 的诊断精度,相 对于卷积神经网络提升了 63. 71% 。 同时,得益于情景训练方式本文方法有效避免了非平衡样本的问题。

    Abstract:

    The data-driven deep learning methods have achieved excellent performance in the mechanical fault diagnosis of high-voltage circuit breakers. However, the premise of these methods to achieve excellent performance is the ability to obtain massive training samples. The diagnostic performance is severely degraded in scenarios where field data are scarce. To address this issue, this article proposes a novel feature fusion metric learning model for mechanical fault diagnosis of field high-voltage circuit breakers. First, a feature fusion convolutional neural network is established, which effectively improves the ability to extract discriminative features. Then, the K-nearest neighbor algorithm is used as the metric learner to realize the matching and classification of few-shot. Finally, the discriminative ability of feature representation is further improved by improving the center loss. And the transferable knowledge is learned from the large sample set constructed in the laboratory through episodic training. Experimental results show that the proposed method can achieve the diagnosis accuracy of 94. 58% when the number of samples in each type of support set is 5. It is 63. 71% higher than that of the convolutional neural network. In addition, the proposed method benefits from the episodic training method, which effectively avoids the problem of unbalanced samples.

    参考文献
    相似文献
    引证文献
引用本文

王艳新,闫 静,王建华,耿英三.基于特征融合度量学习的高压断路器机械故障诊断[J].仪器仪表学报,2022,43(9):98-105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码