基于缺失数据填补的风电齿轮箱状态监测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17 TM315

基金项目:

北京市自然科学基金(4182061)项目资助


Research on condition monitoring of wind turbine gearbox based on missing data imputation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风电机组监控和数据采集系统的现场数据普遍存在缺失问题,会对下游状态监测任务产生一定负面影响。 为此,提出 一种结合注意力机制的掩膜自编码网络,用于填补面板数据样本中的缺失值,增加可用样本数量,提升状态监测结果的准确性 与连续性。 该方法以降噪自编码网络为整体框架,在编码阶段通过注意力机制对缺失值进行掩膜处理,赋予缺失值更高的权重 以强化网络对其关注程度,在解码阶段将缺失值填补后输出完备数据样本。 随后,利用长短时记忆网络提取的样本特征对目标 变量参数进行预测,依据预测残差实现状态监测。 使用某风电齿轮箱运行数据验证,结果表明:提出方法的数据填补偏差相较 对比方法至少改善 17. 2% ;与数据填补前相比,数据填补后样本数量显著增加,使状态监测网络对正常数据的预测残差平均下 降 37. 4% ,对故障数据的检测率提升 6. 8% 。

    Abstract:

    The field data of wind turbine data acquisition and supervisory control system are commonly missing, which have a certain negative influence on the downstream condition monitoring task. To address this issue, a mask autoencoder network with attention mechanism is proposed to impute missing values in panel data samples, increase the number of available samples, and improve the accuracy and continuity of condition monitoring results. The method takes the denoising autoencoder network as the overall framework. In the encoding stage, the missing values are masked by the attention mechanism, and the missing values are given a higher weight to strengthen the attention of the network. In the decoding stage, the complete data samples are output after missing values imputation. Then, the parameter of the target variable is predicted by using the sample features extracted by long short-term memory network, and the condition monitoring is realized according to the prediction residual. This method is evaluated by the operation data of a wind turbine gearbox. Results show that the data imputation bias of the proposed method is at least 17. 2% better than that of the comparison method. Compared with before data imputation, the number of samples increased significantly after data imputation, which makes the prediction residual of normal data decreased by 37. 4% on average and the detection rate of fault data increased by 6. 8% .

    参考文献
    相似文献
    引证文献
引用本文

徐 健,刘长良,王梓齐,赵陆阳.基于缺失数据填补的风电齿轮箱状态监测研究[J].仪器仪表学报,2022,43(9):88-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码