融合层次特征和注意力机制的轻量化矿井图像 超分辨率重建方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH701

基金项目:

国家自然科学基金面上项目(51774281)、贵州省科技支撑计划重点项目(黔科合支撑[2021]重点003号)资助


Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对矿井图像灰暗模糊、边缘不清晰等问题,提出了一种融合层次特征和注意力机制的轻量化矿井图像超分辨率重建 方法。 首先设计一种残差坐标注意力模块,在残差块中融入坐标注意力机制,使网络获得更丰富的高频细节信息;其次采用层 次特征融合机制,对不同网络层次的特征信息进行特征融合,促进边缘细节信息的重建。 最后,再对融合后的特征进行降维以 减少模型计算量和参数量。 为了使模型在真实矿井场景中具有更好的泛化能力,构建了一种煤矿井下图像数据集 CMUID 用于 网络模型的训练和测试实验。 实验结果表明,本文算法的重建图像质量在客观指标和主观感受上均优于其他对比算法。 当缩 放因子为 4 时,与 OISR 算法相比,在煤矿井下数据集上 PSNR 和 SSIM 的平均值分别提升了 0. 318 5 dB 和 0. 012 6,在公共数据 集上 PSNR 和 SSIM 的平均值分别提升了 0. 1 dB 和 0. 003 5;网络模型参数量减少了 70. 7% 。

    Abstract:

    The images in coal mines have problems of dim, blurry and unclear edges. To address these issues, this article proposes a lightweight mine image super-resolution reconstruction method that fuses hierarchical features and attention mechanism. Firstly, by integrating the coordinate attention mechanism into the residual block, this article designs a residual coordinate attention module, which enables the network to obtain rich high-frequency detailed information. Secondly, the hierarchical feature fusion mechanism is adopted to fuse the feature map information of different network levels. Thereby, the reconstruction of edge detail information is promoted. Finally, the dimensionality reduction is performed on the fused features to reduce the amount of model computation and parameters. In addition, to make the proposed model have better generalization performance in real-mine scenes, a coal mine underground image dataset CMUID is constructed for the training and testing experiments of the network model. Experimental results demonstrate that the reconstructed image quality of the proposed algorithm is superior to other comparison algorithms in both objective indicators and subjective feelings. Compared with the OISR algorithm on the underground coal mine image data set, when the scaling factor is set to 4, the average values of PSNR and SSIM of the proposed algorithm can be improved by 0. 318 5 dB and 0. 012 6. As for the public data set, the average PSNR and SSIM of the proposed algorithm are also improved by 0. 1 dB and 0. 003 5, respectively, as well as the number of network model parameters is reduced by 70. 7% .

    参考文献
    相似文献
    引证文献
引用本文

程德强,陈 杰,寇旗旗,聂帅杰,张剑英.融合层次特征和注意力机制的轻量化矿井图像 超分辨率重建方法[J].仪器仪表学报,2022,43(8):73-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码