基于 SURF 的快速图像匹配改进算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH744

基金项目:

航空科学基金(ASFC201951048001)项目资助


An improved algorithm for fast image matching based on SURF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统 SURF 算法在图像匹配中使用固定阈值提取的特征点不均匀、匹配正确率低以及时间复杂度高的问题,提出 一种基于 SURF 算法的快速图像匹配改进算法。 首先,通过对 Hessian 矩阵行列式值分布的统计分析,提出一种阈值自适应方 法来提取更有效的特征点;然后采用四叉树方法对所提特征点进行均匀化以降低误匹配率,并提出一种划分深度自适应的方法 对四叉树算法进行改进,防止四叉树过度划分;最后,本文首次将 BEBLID 二进制描述子与改进 SURF 算法相结合,利用基于机 器学习的采样模式对特征点构建具有强描述性的二进制描述子,在提升匹配正确率的同时加快匹配速度。 实验结果证明,本文 所提算法在 Mikolajcyzk 图片数据集测试中的匹配正确率比传统 SURF 算法高 9. 7% ~ 27. 0% ,算法速度比 SURF 提高了 50% 以 上。 对比 SIFT、SURF、BRISK、ORB 算法,本文所提改进算法具有更优的鲁棒性和实时性。

    Abstract:

    The traditional SURF algorithm using a fixed threshold in image matching has problems of uneven feature points, low matching accuracy and high time complexity. To address these issues, an improved fast image matching algorithm based on the SURF algorithm is proposed. Firstly, through the statistical analysis of the response of the Hessian matrix, an adaptive threshold method is proposed to extract more effective feature points in the image pyramid. Then, the method of quadtree is introduced to homogenize the proposed feature points to reduce the false matching rate. To prevent the quadtree from being over-split, this article proposes an adaptive split depth method to improve the quadtree. Finally, this article combines the BEBLID binary descriptor with the improved SURF algorithm for the first time, and uses the sampling mode based on machine learning to build strong descriptive binary descriptors for feature points, which improves the matching accuracy and enhances the matching speed. Experimental results show that the matching accuracy of the proposed algorithm in the Mikolajcyzk image dataset test is 9. 7% to 27. 0% higher than that of the traditional SURF algorithm, and the speed of algorithm is more than 50% . Compared with SIFT, SURF, BRISK and ORB algorithms, the improved algorithm proposed in this article has better robustness and real-time performance.

    参考文献
    相似文献
    引证文献
引用本文

崔建国,孙长库,李玉鹏,付鲁华,王 鹏.基于 SURF 的快速图像匹配改进算法[J].仪器仪表学报,2022,43(8):47-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码