基于滑动聚类的多传感器异步信息融合方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH741

基金项目:

浙江省教育厅科研项目(Y202147317)资助


A sliding-clustering-based method for multi-sensor asynchronous information fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传感器是智能检测和自动化装置中重要的部件组成,为了解决多传感器异步数据下的融合难题,提出了一种创新的基 于滑动聚类的多传感器异步信息融合方法。 首先引入了 K-means 聚类方法去容忍异步问题,主要利用曲线拟合给出一种简易 的快速的判定法则以便实现实时聚类方法中的 k 值计算;其次设计了聚类滤波核从而在时空域上形成融合滑动管道,让数据的 变化一直维持在一个能接受的误差之内,完整实现了实时多传感器信息融合方法。 最后实验验证了设计的聚类融合方法的正 确性以及合理性,实验证明了 SC-MSIF 方法是正确可行的,且在实时性方面具有较好的表现,相比较 EKF 和 MEAN 方法,SCMSIF 方法的 RMSE 误差减少了 47. 8% 、36. 3% ,同时无人机中多传感器融合实际测试结果也较为优异。

    Abstract:

    Sensors are important components in intelligent detection and automation devices. To solve the problem of fusion under multisensor asynchronous data, an innovative sliding clustering-based multi-sensor asynchronous information fusion method is proposed. Firstly, a K-Means clustering method is introduced to tolerate the asynchronous problem, which mainly uses curve fitting to give a simple and fast rule of thumb for the calculation of k-values in the real-time clustering method. Secondly, a clustering filter kernel is designed to form a sliding pipeline for fusion in the spatial-temporal domain. In this way, the variation of data is always kept within an acceptable error, and the real-time multi-sensor information fusion method is fully implemented. Finally, the experiments validate the correctness and rationality of the designed clustering fusion method. The experiments show that the SC-MSIF method is correct and feasible and has a better performance in terms of real-time performance, and the RMSE error of the SC-MSIF method is reduced by 47. 8% and 36. 3% compared to the EKF and MEAN methods. The actual test results of multi-sensor fusion in UAVs are also better.

    参考文献
    相似文献
    引证文献
引用本文

梅武军,郑 军,金 杰,岳高峰.基于滑动聚类的多传感器异步信息融合方法[J].仪器仪表学报,2022,43(6):109-117

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码