一种基于生成对抗网络与模型泛化的 机器人推抓技能学习方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH701 TP242

基金项目:

国家重点研发计划(2018YFB1308300)、国家自然科学基金区域联合基金(U20A20167)、北京市自然科学基金(4202026)、河北省自然科学基金(F202103079)项目资助


Robot pushing and grasping skill learning method based on generative adversarial network and model generalization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    杂乱环境中机器人推动与抓取技能自主学习问题被学者广泛研究,实现二者之间的协同是提升抓取效率的关键,本文 提出一种基于生成对抗网络与模型泛化的深度强化学习算法 GARL-DQN。 首先,将生成对抗网络嵌入到传统 DQN 中,训练推 动与抓取之间的协同进化;其次,将 MDP 中部分参数基于目标对象公式化,借鉴事后经验回放机制(HER)提高经验池样本利 用率;然后,针对图像状态引入随机(卷积)神经网络来提高算法的泛化能力;最后,设计了 12 个测试场景,在抓取成功率与平 均运动次数指标上与其他 4 种方法进行对比,在规则物块场景中两个指标分别为 91. 5% 和 3. 406;在日常工具场景中两个指标 分别为 85. 2% 和 8. 6,验证了 GARL-DQN 算法在解决机器人推抓协同及模型泛化问题上的有效性。

    Abstract:

    Autonomous learning of robot pushing and grasping skills in the cluttered environment has been widely studied. The cooperation between them is the key to improving grasping efficiency. In this article, a deep reinforcement learning algorithm GARLDQN based on the generative adversarial network and model generalization is proposed. Firstly, the generated adversarial network is embedded into the traditional DQN to train the coevolution between pushing and grasping. Secondly, some parameters in MDP are formulated based on the goal object, and the hindsight experience replay mechanism (HER) is used for reference to improve the sample utilization of the experience pool. Then, according to the image state, a random (convolution) neural network is introduced to improve the generalization ability of the algorithm. Finally, 12 test cases are designed and compared with the other four methods in terms of grasp success rate and average motion times. In the regular block cases, two indicators are 91. 5% and 3. 406, respectively. In the daily tool scene, two indicators are 85. 2% and 8. 6, respectively. These results show the effectiveness of the GARL-DQN algorithm in solving the problems of robot pushing and grasping cooperation and model generalization.

    参考文献
    相似文献
    引证文献
引用本文

吴培良,刘瑞军,李 瑶,陈雯柏,高国伟.一种基于生成对抗网络与模型泛化的 机器人推抓技能学习方法[J].仪器仪表学报,2022,43(5):244-253

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码