基于力度无关鲁棒特征的肌电手势识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4 TH77

基金项目:

国家自然科学基金(61773124)、福建省自然科学基金(2019J01544)项目资助


EMG gesture recognition method based on robust feature independent of strength
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了减小肌肉收缩力变化对肌电信号模式识别的影响,提出了 DCSP 特征。 该特征首先通过 CSP 算法得到最大化类与 类之间距离的空间投影矩阵,然后对投影后的新信号进行差分和归一化处理,最终通过非相关线性判别分析将数据投影到类内 距离最小、类间距离最大的低维空间而得到。 在两个数据集上验证基于 DCSP 特征的肌电手势识别正确率,第 1 个数据集包含 10 名完整肢体受试者的数据,第 2 个数据集包含 9 名上肢截肢者的数据。 在识别率测试的 4 个方案中,DCSP 特征的识别正确 率均高于 CSP 特征,在全部力训练,全部力测试的方案上取得最高的识别率(数据集 1:95. 83% ,数据集 2:86. 93% ),相比 CSP 特征(数据集 1:89. 01% ,数据集 2:70. 03% ),分类准确率分别提升 6% 和 16% 。 在特征空间分布的 2 个测试方案上,DCSP 特征 比 CSP 特征都具有更小的类内距离和更大的类间距离。 相比较于其他研究的识别正确率,DCSP 特征比现有的力度鲁棒特征 提升了约 5% (数据集 1)和 8% (数据集 2),并且性能不依赖于分类器类型。

    Abstract:

    In order to reduce the influence of the change of muscle contraction force on EMG pattern recognition, this paper proposes the feature of DCSP. Firstly, the spatial projection matrix that maximizes inter-class distance is obtained by the CSP. Then, the new signal after projection is differentiated and normalized. Finally, the data are projected into the low-dimensional space with the smallest intraclass distance and the largest inter-class distance by the uncorrelated linear discriminant analysis, the EMG gesture based on DCSP feature is verified on two datasets. The first dataset contains data from 10 complete limb subjects, and the second dataset contains data from 9 upper limb amputees. Among the four schemes of recognition rate testing, the recognition accuracy of the DCSP feature in this paper is higher than that of the CSP feature, and the highest recognition rate is achieved in all force training and all force testing schemes ( dataset1: 95. 83% , dataset2: 86. 93% ). Compared with CSP feature ( dataset1:89. 01% , dataset2: 70. 03% ), the classification accuracy rates are increased by 6% and 16% , respectively. In the two test schemes of feature spatial distribution, the DCSP feature has a smaller intra-class distance and a larger inter-class distance than the CSP feature. In the comparison results of other studies, the DCSP feature improves the recognition accuracy by about 5% (dataset1) and 8% ( dataset2) compared with the existing robust features, and the performance does not depend on the classifier.

    参考文献
    相似文献
    引证文献
引用本文

林 恒,李玉榕,施正义,朱菲菲.基于力度无关鲁棒特征的肌电手势识别方法[J].仪器仪表学报,2022,43(5):183-190

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码