基于人工蜂群-自适应遗传算法的仓储机器人路径规划
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH692. 3

基金项目:

中国博士后科学基金(2021MD703939)项目资助


Path planning for warehouse robot based on the artificial bee colony-adaptive genetic algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了规划出一条更加节能的拣选路径,针对基本遗传算法的性能依赖于初始种群的质量、遗传算子的选择、交叉和变异 操作,提出一种适用于仓储机器人路径规划的人工蜂群-自适应遗传算法。 首先通过人工蜂群算法初始化种群以增强种群多样 性;将路径长度、转弯次数和机器人运行能耗作为适应度函数的评价指标;然后基于三角函数设计自适应策略调整的交叉、变异 算子以提高算法的收敛速度。 仿真实验表明,在 20×20 大小的栅格地图中,本文提出的人工蜂群-自适应遗传算法规划的路径 能耗比基本遗传算法减少 5. 22% ;而在 40×40 大小的栅格地图中,本文提出的人工蜂群-自适应遗传算法规划的路径能耗比基 本遗传算法减少 9. 08% 。 最后实验表明,采用本文提出的人工蜂群-自适应遗传算法规划的能耗减少 7. 64% ,且规划的路径更 平滑,更加适用于仓储机器人的路径规划。

    Abstract:

    To plan a more energy-efficient picking path, an artificial bee colony-adaptive genetic algorithm for warehouse robots is proposed. The performance of the basic genetic algorithm is considered, which depends on the quality of the initial population, the selection, crossover, and mutation operations. Firstly, the artificial bee colony algorithm is used to initialize the initial population, which can enhance the diversity of the population. The path length, turn times, and robot running energy consumption are taken as the evaluation indexes of the fitness function. Then, on the basis of crossover and mutation operators designed by adaptive strategic adjustable trigonometric functions, it can improve the convergence speed of the algorithm. Simulation results show that the path energy consumption of the artificial bee colony-adaptive genetic algorithm proposed in this article is 5. 22% lower than that of the basic genetic algorithm in the 20×20 grid map. On the 40×40 grid map, the energy consumption of the path planned by the artificial bee colonyadaptive genetic algorithm proposed in this article is 9. 08% less than that of the basic genetic algorithm. Finally, experimental results show that the energy consumption of the artificial bee colony-adaptive genetic algorithm is reduced by 7. 64% , and the planned path is smoother, which is more suitable for the path planning of warehouse robots.

    参考文献
    相似文献
    引证文献
引用本文

李艳生,万 勇,张 毅,匡衡阳.基于人工蜂群-自适应遗传算法的仓储机器人路径规划[J].仪器仪表学报,2022,43(4):282-290

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码