基于惯性传感组件和 BP 神经网络的 防冲钻孔机器人钻具姿态解算
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH6 TD42

基金项目:

国家重点研发计划项目资助(2020YFB1314200)、江苏高校优势学科建设工程(苏政办发[2018]87号)项目资助


Drilling tool attitude calculation of drilling robot for rockburst prevention based on inertial sensing assembly and BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钻孔卸压是高地应力矿井治理冲击地压的首要措施,对实施钻孔作业的防冲钻孔机器人钻具姿态准确测量是保障钻孔 位置及卸压效果的前提。 为此,本文提出了基于惯性传感组件和 BP 神经网络的防冲钻孔机器人钻具姿态解算方法,通过设计 惯性传感组件的空间阵列式布局方式(空间阵列式 IMU),建立了空间阵列式 IMU 的数据融合模型及位姿解算模型,实现了钻 具姿态的高精度解算。 在此基础上,提出了基于 BP 神经网络的惯性传感组件误差补偿方法,建立了钻具姿态解算误差补偿模 型,并通过钻具模拟运动的解算分析对空间阵列式 IMU 解算和误差补偿方法的可行性进行了验证。 最后,通过搭建的防冲钻 孔机器人钻具姿态监测实验平台,对不同方法的钻具解算结果进行对比分析。 实验结果表明,在 BP 神经网络模型进行误差补 偿后,本文所提方法解算出的钻具姿态精度明显提高,钻具方位角、倾角和横滚角的平均误差分别为 0. 099°、0. 079°和 0. 045°, 有效抑制了惯性传感组件的漂移和误差积累,且钻具姿态解算误差曲线没有出现发散现象。 因此,该方法可以持续稳定地对防 冲钻孔机器人钻具姿态进行可靠监测,具有较高的推广应用价值。

    Abstract:

    Borehole pressure relief is the primary measure to control rock bursts in high in-situ stress mines. Accurate measurement of drilling tool attitude of the drilling robot for rockburst prevention is the premise to ensure the drilling hole position and pressure relief effect. Therefore, this article proposes a drilling tool attitude calculation method based on inertial sensing assembly and BP neural network. By designing the spatial array layout of inertial sensing assembly (spatial array IMU), the data fusion model and the attitude calculation model of spatial array IMU are formulated, which could realize the high-precision calculation results of drilling tool attitude. On this basis, the error compensation method of inertial sensing units based on the BP neural network is proposed and the error compensation model of drilling tool attitude calculation is established. The feasibility of spatial array IMUs calculation and error compensation method is evaluated by analyzing the drilling tool simulation motion. Finally, the drilling tool attitude monitoring experimental platform of the drilling robot is established to compare and analyze the drilling tool calculation results of different methods. Experimental results show that after the error compensation of the BP neural network model, the attitude accuracy of the drilling tool calculated by the proposed method is significantly improved, and the average errors of azimuth, inclination, and roll angle are 0. 099°, 0. 079°, and 0. 045°, respectively. The compensation measures effectively restrain the drift and error accumulation of inertial sensing units, and there is no divergence in the error curve of drilling tool attitude calculation. Therefore, this method can continuously and reliably monitor the drilling tool attitude of drilling robot for rockburst prevention s and has high popularization and application value.

    参考文献
    相似文献
    引证文献
引用本文

司 垒,王忠宾,王 浩,魏 东,谭 超.基于惯性传感组件和 BP 神经网络的 防冲钻孔机器人钻具姿态解算[J].仪器仪表学报,2022,43(4):213-223

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码