基于机器视觉的表面缺陷检测方法研究进展
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH89

基金项目:

国家自然科学基金(61573183)项目资助


Research progress of surface defect detection methods based on machine vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在半导体、PCB、汽车装配、液晶屏、3C、光伏电池、纺织等行业中,产品外观与产品性能有着千丝万缕的联系。 表面缺陷 检测是阻止残次品流入市场的重要手段。 利用机器视觉的技术进行检测效率高、成本低,是未来发展的主要方向。 本文综述了 近十年来基于机器视觉的表面缺陷检测方法的研究进展。 首先给出了缺陷的定义、分类以及缺陷检测的一般步骤;然后重点阐 述了使用传统图像处理方式、机器学习、深度学习进行缺陷检测的原理,并比较和分析了优缺点,其中传统图像处理方式分为分 割与特征提取两个部分,机器学习包含无监督学习和有监督学习两大类,深度学习主要囊括了检测、分割及分类的大部分主流 网络;随后介绍了 30 种工业缺陷数据集以及性能评价指标;最后指出缺陷检测方法目前存在的问题,对进一步的工作进行了 展望。

    Abstract:

    In semiconductor, printed circuit board (PCB), automobile assembly, liquid crystal display (LCD), 3C, photovoltaic cell, and textile industries, the appearance of the product is closely related to the performance of the product. Surface defect detection is an important way to prevent defective products from entering the market. The utilization of machine vision technology to perform inspections with high efficiency and low cost is the main direction of future development. This article reviews the research progress of surface defect detection methods based on machine vision in recent ten years. Firstly, the definition of defect is given, and the general steps of defect detection are described. Then, it focuses on the principle of defect detection using traditional image processing methods, machine learning, and deep learning. The advantages and disadvantages are compared and analyzed. The traditional image processing methods are divided into segmentation and feature extraction. Machine learning consists of unsupervised learning and supervised learning. Deep learning mainly covers most of the mainstream networks for detection, segmentation and classification. Then, 30 kinds of industrial defect data sets and performance evaluation indexes are introduced. Finally, the existing problems of defect detection methods are pointed out and the further work is prospected.

    参考文献
    相似文献
    引证文献
引用本文

赵朗月,吴一全.基于机器视觉的表面缺陷检测方法研究进展[J].仪器仪表学报,2022,43(1):198-219

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知