基于自适应模拟退火及 LM 联合反演算法的 ECT 图像重建
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH701

基金项目:

国家自然科学基金(61973115)项目资助


Image reconstruction for electrical capacitance tomography based on adaptive simulated annealing and LM joint inversion algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决电容层析成像技术(ECT)中图像重建的非线性和病态性问题,提出了一种自适应模拟退火-Levenberg Marquardt (ASA-LM)联合反演算法。 改进了标准模拟退火(SA)算法的新解生成策略、能量函数的定义及退火策略,并结合 LM 的直接局 部搜索方法联合反演 ECT 图像重建问题。 同时,利用 Savitzky-Golay (SG) 滤波对 ECT 图像重建所需电容数据进行平滑处理以 提高其信噪比。 最后,进行仿真及静态实验,并与线性反投影(LBP)、Landweber 迭代及标准 SA 算法进行了比较。 结果表明,与 其他 3 种算法相比,ASA-LM 算法收敛速度快、图像重建质量明显提高,边缘信息保真度高,重建图像的平均相对误差为 0. 331 1,平均相关系数为 0. 933 1。

    Abstract:

    To solve the nonlinear and ill-conditioned problem of image reconstruction in the electrical capacitance tomography (ECT), an adaptive simulated annealing-Levenberg Marquardt ( ASA-LM) joint inversion algorithm is proposed. The new solution generation strategy, energy function definition and annealing strategy of the standard simulated annealing (SA) algorithm are improved. The direct local search method of LM is combined to jointly invert the ECT image reconstruction problem. Meanwhile, the Savitzky-Golay ( SG) filter is used to smooth the capacitance data required for ECT image reconstruction to enhance its signal-to-noise ratio. Finally, simulation and static experiments are carried out and compared with linear back projection (LBP), Landweber iteration and standard SA algorithms. Comparison experiment results show that the ASA-LM algorithm has advantages of high reconstruction image accuracy and fast convergence speed. The image reconstruction quality is significantly improved, and the edge information fidelity is high. The average relative error of the reconstructed image is 0. 331 1, and the average correlation coefficient is 0. 933 1.

    参考文献
    相似文献
    引证文献
引用本文

张立峰,张梦涵.基于自适应模拟退火及 LM 联合反演算法的 ECT 图像重建[J].仪器仪表学报,2021,(12):228-235

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码