摘要:热轧钢条的表面质量对成品至关重要,因此必须要严格控制热轧钢条的表面出现的缺陷。 针对当前 YOLOv4 算法检测 精度不高、对小范围信息表现较差等问题,提出一种改进 YOLOv4 自动检测方法。 首先,将 YOLOv4 中特征提取网络 CSPDarknet53 换为轻量级深层神经网络 MobileNetv3 来提高检测速度,并且加强对检测目标特征提取以及减少梯度消失问题。 其次,采用 K-Means 聚类生成适合本实验的先验框,有效提高学习效率,加快收敛速度。 最后,对置信度损失进行重新定义,提 出一种能够适应多尺度的损失函数,来解决因正负样本不平衡而导致检测效果差的问题。 实验结果表明,该方法较原 YOLOv4 模型在热轧钢条的表面缺陷检测上的均值平均精度值提高约 7. 94% ,速度提升约 4. 52 f / s,在保证检测速度的基础上有效提高 了精确度。