基于多注意力 Faster RCNN 的噪声干扰下 印刷电路板缺陷检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH39

基金项目:

国家自然科学基金(51975079)、国家重点研发项目( 2018YFB1306601)、重庆市教委科学技术研究项目(KJQN201900721)、重庆市研究生导师团队项目(JDDSTD2018006)资助


Printed circuit board defect detection based on the multi-attentive faster RCNN under noise interference
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业环境中噪声干扰导致的印刷电路板缺陷检测困难的问题,提出基于多注意力 Faster RCNN 的印刷电路板缺陷检 测方法,分别于特征提取以及特征融合部分引入注意力机制以获得具有抗干扰能力的特征表示,提升检测效果。 首先使用分离注 意力网络提取缺陷特征,使网络自动关注到缺陷特征,以降低噪声干扰的影响;其次,使用平衡特征金字塔融合不同分辨率特征, 利用非局部注意力机制对融合特征进行全局感受野内不同区域特征的加权,增强其缺陷表征能力并进一步抑制噪声干扰;最后, 依据所获得的特征表示,利用区域建议网络生成缺陷候选框并利用全连接层对其进行位置以及类别的确定以得到检测结果。 在 不同程度噪声干扰下的印刷电路板缺陷数据集上进行实验验证,平均检测精度达到 92. 4% ,证明了所提方法的有效性和可行性。

    Abstract:

    To address the problem of PCB defect detection caused by noise interference in industrial environment, a PCB defect detection method based on the multi-attention Faster RCNN is proposed. The attention mechanism is introduced into the feature extraction and feature fusion parts to obtain feature representations with anti-interference ability. First, the defective features are extracted by using a split-attention network that automatically focuses on the defective features to reduce the effect of noise interference. Secondly, a balanced feature pyramid is used to fuse different resolution features, and a non-local attention mechanism is utilized to weight the fused features to different regions within the global perceptual field to enhance their defect characterization and further suppress noise interference. Finally, based on the obtained feature representation, the regional proposal network is used to generate defect candidate box. The fully connected layer is utilized to determine defects′ position and category to obtain the detection results. Experiments are implemented on the printed circuit board defect data sets under different degrees of noise interference. The average detection accuracy reaches 92. 4% , which proves the effectiveness and feasibility of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

陈仁祥,詹 赞,胡小林,徐向阳,蔡东吟.基于多注意力 Faster RCNN 的噪声干扰下 印刷电路板缺陷检测[J].仪器仪表学报,2021,(12):167-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码