基于改进 MEDA 算法的脑电情绪识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH79

基金项目:

国家自然科学基金(U20A20192,62076216)项目资助


EEG emotion recognition based on the improved MEDA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对普通机器学习算法与迁移学习在应用方面的局限性,利用改进流形嵌入分布对齐算法(MEDA)算法解决跨被试情 绪识别中准确率低的问题。 其中 MEDA 通过流行特征变换来减小域之间的数据漂移,并能够自适应定量估计边缘分布和条件 分布的权重大小。 针对特征维度大且有可能存在不良特征的问题,提出改进 MEDA 算法,即引入改进最小冗余最大相关算法 用于特征选择,并对多源域下的多组识别结果进行决策级融合,进一步提升迁移学习效果。 在 SEED 数据集和实测数据对该算 法验证,改进 MEDA 算法相比于支持向量机、迁移成分分析和联合分布适配算法,整体识别精度分别提升了 8. 97% 、4. 00% 、 2. 89% ,改进的 MEDA 算法相比于改进前,每个被试识别准确率均有提升的同时整体识别提升 3. 36% ,验证了该方法的有效性。

    Abstract:

    The limited applications of the traditional machine learning algorithms and the transfer learning algorithm are considered in this study. The improved manifold embedded distribution alignment (MEDA) algorithm is utilized to improve the detection accuracy in the cross-subject emotion recognition. The MEDA algorithm in the manifold space could reduce the data drift between domains by popular feature transformation, which can adaptively and quantitatively estimate the weights of edge distribution and conditional distribution. This article proposes an improved manifold space distribution alignment algorithm to address the problems of large feature dimension and possible bad features. An improved minimum redundancy maximum correlation algorithm is introduced for feature selection. The computational complexity is reduced, the associated features are selected, and the decision-level fusion on multiple groups of recognition results in multi-source domain is performed to further improve the transfer learning effect. The analysis results of SEED data set and the measured data set show that the distribution alignment algorithm in the manifold space is better than those of the support vector machine, transfer component analysis and joint distribution adaptation. The overall recognition accuracy is improved by 8. 97% , 4. 00% , and 2. 89% , respectively. The improved distribution alignment algorithm in manifold space has improved the recognition accuracy of each subject, and the overall recognition accuracy is improved by 3. 36% . Therefore, the effectiveness of the proposed method is verified.

    参考文献
    相似文献
    引证文献
引用本文

何 群,李冉冉,付子豪,江国乾,谢 平.基于改进 MEDA 算法的脑电情绪识别[J].仪器仪表学报,2021,(12):157-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码