基于深度学习模型融合的铸件缺陷自动检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH164 TG245 TP391. 41

基金项目:

重庆市技术创新与应用发展专项(cstc2019jscx-msxmX0058)、国家重大科学仪器设备开发专项(2013YQ030629)资助


Automatic detection of casting defects based on deep learning model fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前铸件缺陷检测漏检率高的问题,提出一种基于深度学习模型融合的铸件缺陷检测方法。 首先对 Faster RCNN 网络进行改进,利用特征金字塔结构改进特征提取网络模块,实现多尺度的特征融合,完成铸件缺陷的特征提取;然后,基于 ROI Align 对网络中的 ROI 池化层进行改进,将 IOU 分数引入 NMS 算法判定过程;再将改进后的网络与 Cascade RCNN 以及 YOLOv3 进行融合;最后进行实验研究,验证了融合模型能够有效降低铸件缺陷的漏检率。 实验结果表明,将感兴趣区域池化 改进后,在 Faster RCNN 模型中的缺陷召回率提升了 1. 73% ,在本文网络模型中的缺陷召回率提升了 4. 08% ;采用模型融合的 方法在不考虑分类准确度的情况下,整个模型的缺陷识别率达到 95. 71% ,与单个模型相比,在保证铸件缺陷检测准确率的同 时,提高了缺陷检测的召回率,满足了工业应用的要求。

    Abstract:

    Aiming at the high missed detection rate of casting defects, a casting defect detection method based on deep learning model fusion is proposed. Firstly, the Faster RCNN network is improved, the feature pyramid structure is used to improve the feature extraction network module, multi-scale feature fusion is realized, and the feature extraction of casting defects is completed. Then, the ROI pooling layer in the network is improved based on ROI Align, and the IOU score is introduced into the judgment process of NMS algorithm. And the improved network is integrated with Cascade RCNN and YOLOv3. Finally, an experiment study was carried out to verify that the fusion model can effectively reduce the missed detection rate of casting defects. The experiment results show that the defect recall rates in the Faster RCNN model and the network model proposed in this paper are increased by 1. 73% and 4. 08% , respectively after the pooling improvement of the region of interest. Using the method of model fusion, in the condition without considering the classification accuracy, the defect recognition rate of the entire model reaches 95. 71% . Compared with single model, while guaranteeing the detection accuracy of casting defects, the method also improves the defect detection recall rate and meets the requirements of industrial applications.

    参考文献
    相似文献
    引证文献
引用本文

杨 珂,方 诚,段黎明.基于深度学习模型融合的铸件缺陷自动检测[J].仪器仪表学报,2021,(11):150-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知