摘要:电能计量设备可靠运行与否影响着电网边缘测量与电量计量准确性,为此本文提出一种基于参数优化 BP 神经网络的 设备退化趋势分析方法。 结合国网新疆高干热试验基地,及其智能电能计量设备实时运行基本误差数据,利用 Spearman 相关 性分析方法,提取影响智能电能计量设备基本误差值的主要环境应力;采用函数拟合插值(FFI)方法消除原始数据中缺失值对 退化分析的影响,建立基于 BP 神经网络的智能电能计量设备退化研究模型;最后,引入改进遗传算法( IGA)优化 BP 神经网络 参数,实现智能电能计量设备退化趋势的向后预测与更新。 选取基地中不同型号的若干个智能电能计量设备进行多项实验,结 果表明本文模型具有较高的预测能力,预测结果的平均均方根误差为 0. 012 3,预测准确度最高可达 90. 2% 。