基于贝叶斯网络的磨煤机过程异常工况诊断 模型实时更新方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181 TH165. 3 TM621. 7

基金项目:

国家自然科学基金(61873053)项目资助


Real-time updating strategy for Bayesian network-based coal mill process abnormity diagnosis model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    磨煤机作为火电厂制粉系统的核心设备,依靠新磨煤机投入使用后仅有的少量异常工况数据,建立其异常工况诊断模 型,对整体系统安全运行有着重要的意义。 本文首先针对磨煤机三个典型异常工况建立异常工况诊断模型,并提出新的基于节 点辨识的贝叶斯网络模型实时更新方法。 将已有磨煤机成熟的异常工况诊断模型作为源域模型,利用目标域磨煤机仅有的少 量新数据信息,搜索源域模型与新数据信息不匹配的节点。 在保留源域模型有用信息的前提下,通过局部更新,依据新的数据 信息完成目标域模型的更新补足。 为了验证方法的有效性,将所提方法应用于磨煤机异常工况诊断过程,实验结果表明,更新 得到的模型具有良好的性能,平均诊断正确率超过 98% 。

    Abstract:

    Coal mill is the core equipment of coal pulverizing system in the thermal power plant. It is of great significance for system safety to formulate the abnormity diagnosis model based on a small amount of data when the new coal mill is into production. In this paper, the diagnosis model based on three typical abnormities in the process of coal mill is firstly established. A new real-time updating strategy for the Bayesian network (BN) model based on node identification is proposed. Taking the abnormity diagnosis BN of existing coal mills as the source domain model and using the small amount of new data of the coal mill in the target domain, the nodes that do not match the new information could be found out. Retaining the useful information of the source domain model, the target domain model will be updated and supplemented according to the new data through local updating. To verify the proposed method, the method is applied to the diagnosis process of abnormity. Experimental results show that the updated model has good performance, and the average correct rate of diagnosis is more than 98% .

    参考文献
    相似文献
    引证文献
引用本文

常玉清,康孝云,王福利,赵炜炜.基于贝叶斯网络的磨煤机过程异常工况诊断 模型实时更新方法[J].仪器仪表学报,2021,(8):52-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码