嵌入式神经网络加速器及 SoC 芯片
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH166 TN47 TP391. 4

基金项目:


Embedded neural network accelerator and SoC chip
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高人工智能加速器的运算效率和功耗效率,提出了一种新的卷积神经网络(CNN)加速器结构,并实现了神经网 络存算一体的方法。 首先,设计出一种神经网络架构,其具有高度并行计算以及乘加器(MAC)单元高效运行的特性。 其次,为 了降低功耗和面积,采用了对称的静态随机存储器(SRAM)阵列和可调数据流向结构,实现多层网络在 SRAM 中高效计算,减 少了访问外部存储器次数,降低了功耗,提高运算效率。 通过中芯国际 40 nm 工艺,完成了系统芯片( SoC)设计、流片与测试。 结果表明运算速度在 500 MHz 下,算力可达 288 GOPS;全速运行功耗 89. 4 mW;面积 1. 514 mm 2 ;算力功耗比 3. 22 TOPS / W; 40 nm 算力面积比为 95. 1 GOPS / mm 2 。 与已有文献的相比,算力功耗至少提升 4. 54% ,算力面积至少提升 134% ,对于嵌入式场 景应用较适合。

    Abstract:

    In order to improve the operation efficiency and power efficiency of artificial intelligence accelerator, proposes a new convolutional neural network (CNN) accelerator, and realizes a computing-in-memory method. Firstly, a neural network architecture is designed, which has the characteristics of highly parallel computing and efficient operation of MAC unit. Secondly, in order to reduce power consumption and die size, a symmetric SRAM array and an adjustable data flow structure are adopted to realize the efficient computation of multi-layer network in SRAM, which reduces the times of external memory access and the power consumption of SoC system. Operation efficiency is improved as well. Through the 40 nm process of SMIC, the SOC design, tape and test are completed. Results show that the computational power can reach 288 GOPS at 500 MHz, the power consumption at full speed is 89. 4 MW, the area is 1. 514 mm 2 , the computational power consumption ratio is 3. 22TOPS / W and the 40nm computational power area ratio is 95. 1 GOPS / mm 2 . Compared with results in other literatures, the power consumption and area of computing power increase by at least 4. 54% and 134% , respectively, which is more suitable for embedded ends.

    参考文献
    相似文献
    引证文献
引用本文

易冬柏,陈 恒,何乐年.嵌入式神经网络加速器及 SoC 芯片[J].仪器仪表学报,2021,(7):155-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码