输电杆塔弱纹理部件的可迁移式检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH74 TP183

基金项目:


Transferable detection for low texture components of transmission tower
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电杆塔关键弱纹理部件的通用检测方法依赖大量样本的标注和学习。在无相关部件样本训练情况下,本文提出一种可迁移的输电杆塔弱纹理部件检测方法。本文方法结合了孪生神经网络和互相关卷积用于融合样本块与待搜索区域的特征,其中通过样本部件掩膜裁剪以有效滤除背景噪声,最后在尺度、位置、交并比3个方面提出了对应的分数修正策略以提高检测精度。实验结果表明,本文提出的掩膜裁剪和分数修正策略有效提高了弱纹理部件的检出精度,按照AP的标准,本文检测方法的平均准确率达到了98.0%,能有效避免由于观测视角、尺度以及光照带来的于扰。

    Abstract:

    For key low texture components of the transmission tower, most detection methods rely on the labeling and training of a largenumber of sample images, while these samples are usually scarce. Proposes a transferable deteetion method-PowerNet for the key lowtextured components. It combines Siamese network and eross-correlation convolution to fuse the features of sample block and searchregion,and effectively filters out the background of the component sample image using mask eropping, Finally, scoring candidate regionis proposed where the seale, location, and loU are adopted to improve the accuracy of detection. Experiments show that mask ermppingand sooring candidate region play an important role in accurate detection. According to AP⁵0 eriterion, the avernge accuracy rate of ourdeteetion method reaches 98%, which can detect various eomponents of the transmission tower concerning the varianee of view angle,scale, or illumination.

    参考文献
    相似文献
    引证文献
引用本文

吴 华,梁方正,刘 草,白晓静,吕 敏.输电杆塔弱纹理部件的可迁移式检测[J].仪器仪表学报,2021,(6):172-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码