基于DAE和TCN的复杂工业过程故障预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP277 TH17

基金项目:

国家自然科学基金(61803005,61640312,61763037)、北京市自然科学基金(4192011,4172007)、山东省重点研发计划(2018CXGC0608)、北京市教育委员会项目资助


Fault prediction of complex industrial process based on DAE and TCN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实时监测复杂工业过程的故障状态,精确预测故障趋势,提出基于降噪自编码和时间卷积网络的故障预测方法。首先,利用随机森林算法筛选故障相关特征。之后,利用堆栈降噪自编码网络提取非线性特征以及特征重构,并根据重构误差构造平方预测误差(SPE)统计量作为故障状态特征。最后,针对时间卷积网络残差模块中的ReLU激活函数在负区间内导数为零导致部分神经元无法被激活的问题,设计基于自门控激活函数(Swish)和滤波器响应(FRN)规范化的时间卷积网络(SFTCN)。将得到的SPE组成时间序列,利用SFTCN的预测模型实现其状态趋势预测。通过在TE仿真平台数据和美国密歇根大学智能维修中心实测的轴承全生命数据上的实验表明,与未改进的时间卷积网络对比,所提方法的预测平均绝对百分比误差至少降低20.9%,具有较高的应用价值。

    Abstract:

    In order to monitor the slate of complex industrial process in real time and predict the fault trend accurately, this paperpresents a fault prediction method based on denoising auto eneoder(DAE)and temporal convolutional network (TCN).Firstly,therandom forest algorithm is used to filter out the features related to faults. Then, the nonlinear features of input data are extracted and theoriginal features of input data are reconstructed, and the squared prediction error(SPE)statistics is established based on thereconstruetion error to reflect the slate characteristies of the faults. Finally, considering that the derivative of ReL.U activation funetion inthe residual module of TCN is zero in the negative interval, which may cause certain neurons to fail to activate, a Swish activationfunetion and filter response normalization-based temporal convolutional network (SFTCN) is proposed. By construeting the obtained SPEinto time series, the SPE predietion can he realized based on the SFTCN. Experiments are conducted with the data of Tennessee Eastman (TE) process and the life-ceycle vibration data of rolling bearings measured by the center for intelligent maintenance systems of theUniversity of Michigan. Results show that eompared with the unmodified TCN, the average absolute pereentage eror of the proposedmethod is redueed by at least 20.9%, which has high application value.

    参考文献
    相似文献
    引证文献
引用本文

高学金,马东阳,韩华云,高慧慧.基于DAE和TCN的复杂工业过程故障预测[J].仪器仪表学报,2021,(6):140-151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码