基于投影视角加权的直线CL重建算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP23 TH74

基金项目:

国家科技重大专项(2017-VII-0011-0106)资助


Linear CL reconstruction algorithm based on projection view-weighting
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    计算机分层成像对板状构件的无损检测有其独特的优势,但由于投影角度有限,导致重建图像存在有限角伪影和分层图像模糊。为提高计算机分层成像图像质量,提出了基于投影视角加权的滤波反投影算法,有效抑制了高密度特征对其它层的干扰现象。首先,根据不同投影视角分层图像间的不相似度,确定不同投影视角的加权系数;而后,对投影进行加权反投影重建;最后,分析了3种不同加权系数对重建图像质量的影响,同时引人层灵敏度曲线的调制度作为定量评价指标,未加权和3种不同加权系数层灵敏度曲线的调制度依次为0.082,0.267,0.290,0.294。实验结果表明,该算法减少了分层图像混叠,层灵敏度曲线的调制度提升了约0.2,重建图像质量显著提升。

    Abstract:

    Computed laminography imaging has its unique advantages in nondestructive testing of plate componenis, However, due to thelimited projection angle, there are limited-angle artifacts and blur in the sliced image. In order to improve the image quality of computedlaminography, a filtered back-pmojection algorithm based on projection view-weighting is proposed, which effectively suppresses theinterference of high-density features to other slices. Firstly, aceording to the dissimilarity among the sliced images from diferentprojeetion views, the weighing coeficients of different projeetion views are determined,and then the projeetion is reconstructed byweighted back-projcetion. Finally, the effeets of three different weighting eoefficients on the quality of reeonstrueted images are analyzed,and this paper takes the modulation of slice sensitivity profile as the quantitative evaluation index, the modulation of slice sensitivityprofiles for unweighted and three different weighting coefficients are 0.082,0.267,0.290 and 0.294,respectively. The experimentresults show that the proposed algorithm reduces the sliced image aliasing, the modulation of slice sensitivity profile is increased by about 0.2 and the quality of recnstrueted images is signifieantly improved.

    参考文献
    相似文献
    引证文献
引用本文

蔡玉芳,李屏懿,王 珏,王 涵.基于投影视角加权的直线CL重建算法[J].仪器仪表学报,2021,(6):64-74

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码