基于高维空间聚类的集中供热末端数据异常检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 5 TH81

基金项目:

国家自然科学基金(61903226)、山东省自然科学基金(ZR2020QF061,ZR2020QF068)项目资助


Anomaly detection of residential data in the district heating system based on high dimensional Gaussian mixture clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    因集中供热建筑结构、住户行为习惯等差异,末端住户供暖数据具有特征差异大、非线性强、数据量大、响应时间长等特 征,在原数据空间中利用聚类分析进行异常检测造成类间数据交叉,精确性无法保证。 本文提出高维高斯混合聚类算法,将数 据集映射到高维空间进行聚类,利用核函数映射、内积运算与高维特征空间分解等计算方法,提高精确度,规避维数灾难。 搭建 工业大数据分析平台,对比 K-Means、高斯混合、恒虚警率、高维高斯混合算法聚类结果与异常检测精确度,本文所提算法将准 确性提高到 90. 72% ,误报率降低到 5. 92% ,结合该算法完成 4 类异常用热数据集的解释与辨识。 高维高斯混合聚类可以有效 分析用户用热特征、检测异常数据,辅助降低采暖能耗,实现建筑节能。

    Abstract:

    The building structure and household behavior of end-users are different. The heating datasets of end-users have features of large amount, strong nonlinearity, long response time, etc. In the original data space, it is hard to implement anomaly detection by the clustering analysis. The problem is the serious data crossing that greatly reduces the accuracy. In this paper, the high dimensional Gaussian mixture clustering (HGMM) is proposed to map datasets in original space to high-dimensional space for clustering. Kernel function mapping, inner product, decomposition of high-dimensional feature space are used to improve clustering accuracy and avoid dimensional disaster. Industrial big data ingestion and analysis platform ( IBDP) is established. The clustering and anomaly detection accuracy of K-Means, Gaussian mixture model (GMM), constant false alarm rate, and HGMM are compared. The proposed method could improve the clustering accuracy to 90. 72% and reduce the detection error rate to 5. 92% . Four types of abnormal heating patterns are identified and analyzed. The proposed HGMM could be used to effectively analyze the residential heating characteristics, detect the abnormal datasets, help reduce the heating energy consumption, and realize the building energy saving.

    参考文献
    相似文献
    引证文献
引用本文

孙文慧,张海伦,王 雷.基于高维空间聚类的集中供热末端数据异常检测[J].仪器仪表学报,2021,(5):235-242

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知