弓网接触力长短时记忆网络预测的 受电弓主动控制与仿真
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH703 U264. 3 U264. 4

基金项目:

国家自然科学基金(51975079)、重庆市技术创新与应用示范项目( cstc2018jscx-msybX0012)、重庆市教育委员会科学技术研究项目(KJQN201900721)、交通工程应用机器人重庆市工程实验室开放基金(CELTEAR-KFKT- 202002)项目资助


Active control and simulation for pantograph based on contact force prediction of long short-term memory network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对列车高速行驶时弓网系统接触力波动剧烈影响受流质量的问题,充分利用长短时记忆网络对时序预测的优势,提 出了弓网接触力长短时记忆网络预测的受电弓主动控制方法。 首先以二元受电弓模型作为研究对象,建立其动力学方程,并对 其模型进行仿真得到接触力波动数据。 然后,将仿真得到的接触力数据作为训练样本输入长短时记忆网络中建立预测模型,以 预测下一时刻接触力。 最后,以接触力预测值和期望值的差值作为目标控制力输出至磁流变阻尼器,由磁流变阻尼器提供控制 力作用到受电弓,从而抑制接触力的动态波动以提高提高列车受流质量。 通过实验证明,所提方法对弓网接触力控制更加准 确,且大幅降低弓网接触力波动标准差,降幅超过 70. 13% ,且规避了弓网系统离线情况的发生,验证了所提方法在改善弓网受 流质量上的稳定性和优越性。

    Abstract:

    The contact force fluctuation of the pantograph-catenary system greatly affects the current quality when the train is running at high speed. To address this issue, an active control method of pantograph is proposed, which is based on contact force prediction of long short-term memory network. The advantage of long short-term memory network for time series prediction is fully utilized. Firstly, the pantograph model with two lumped masses is taken as the research object. Its dynamic equation is established, and the contact force fluctuation data is obtained by simulation of the model. Then, the contact force data obtained from simulation are utilized to train the long short-term memory network. In this way, a prediction model is formulated to predict the contact force at the next moment. Finally, the difference between the predicted value and the expected value of the contact force is taken as the target control force output to the magnetorheological damper. The magnetorheological damper provides the control force to act on the pantograph. The dynamic fluctuation of the contact force is suppressed and the current quality of the train is improved. Experimental results show that the proposed method is more accurate in the control of the contact force. The standard deviation of the fluctuation of the contact force is significantly reduced by more than 70. 13% . The offline situation of the pantograph-catenary system is avoided, which verifies the stability and superiority of the proposed method for improving the current quality of the pantograph.

    参考文献
    相似文献
    引证文献
引用本文

陈仁祥,王 帅,杨黎霞,杜子学,孙文杰.弓网接触力长短时记忆网络预测的 受电弓主动控制与仿真[J].仪器仪表学报,2021,(5):192-198

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知