面向 AR-HUD 的多任务卷积神经网络研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH85 TP391

基金项目:

国家自然科学基金(51505054)、重庆市科技局(cstc2019jscx-zdztzxX0050)项目资助


Research on multi-task convolutional neural network facing to AR-HUD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    汽车上 AR-HUD 已经得到了广泛应用,其环境感知模块需完成目标检测、车道分割等多个任务,但是多个深度神经网 络同时运行会消耗过多的计算资源。 针对这一问题,本文提出一种应用于 AR-HUD 环境感知的轻量级多任务卷积神经网络 DYPNet,其以 YOLOv3-tiny 框架为基础,融合金字塔池化模型、DenseNet 的密集连接结构、CSPNet 网络模型的思想,在精度未下 降的情况下大幅减少了计算资源消耗。 针对该神经网络难以训练的问题,提出了一种基于动态损失权重的线性加权求和损失 函数,使子网络损失值趋于同步下降,且同步收敛。 经过在公开数据集 BDD100K 上训练及测试,结果表明该神经网络的检测 mAP 和分割 mIOU 分别为 30% ,77. 14% ,使用 TensorRt 加速后,在 Jetson TX2 上已经可以达到 15 frame·s -1 左右,已达到 ARHUD 的应用要求,并成功应用于车载 AR-HUD。

    Abstract:

    AR-HUD has been widely used in automobile. Its environment perception module needs to complete target detection, lane segmentation and other tasks, but multiple deep neural networks running at the same time will consume too much computing resources. In order to solve this problem, a lightweight multi-task convolutional neural network ( DYPNet) applied in AR-HUD environment perception is proposed in this paper. DYPNet is based on YOLOv3-tiny framework, and fuses the pyramid pooling model, DenseNet dense connection structure and CSPNet network model, which greatly reduces the computing resources consumption without reducing the accuracy. Aiming at the problem that the neural network is difficult to train, a linear weighted sum loss function based on dynamic loss weight is proposed, which makes the loss of the sub-networks tend to decline and converge synchronously. After training and testing on the open data set BDD100K, the results show that the detection mAP and segmentation mIOU of the neural network are 30% and 77. 14% , respectively, and after accelerating with TensorRt, it can reach about 15 FPS on Jetson TX2, which has met the application requirements of AR-HUD. It has been successfully applied to the vehicle AR-HUD.

    参考文献
    相似文献
    引证文献
引用本文

冯明驰,卜川夏,萧 红.面向 AR-HUD 的多任务卷积神经网络研究[J].仪器仪表学报,2021,(3):241-250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码