基于自适应优化空频微分熵的情感脑电识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH782

基金项目:

江苏省前沿引领技术基础研究专项( BK20192004)、国家自然科学基金 ( 61772198, 61772199)、浙江省基础公益研究项目(LGN18F020002)资助


Emotion EEG recognition based on the adaptive optimized spatial-frequency differential entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    情感脑机接口旨在提供一种人与设备情感沟通的通道,情感脑电识别是其中最为基础和关键的环节。 为了自适应地选 择个体最优的空间电极和频段组合以实现情感脑电特征优化和分类效果提升,本文提出一种新的自适应优化空频微分熵 (AOSFDE)特征,设计了基于相对熵的情感脑电空间电极重要性度量方法,根据导联重要性进行空间电极选择,通过稀疏回归 算法对多重局部空间-频域内的微分熵特征进行优化选择。 采用上海交通大学情感脑电数据集 SEED 进行实验分析,结果表明 本文提出的 AOSFDE 方法可以有效提高识别准确率,针对 15 名被试者的积极/ 消极、积极/ 中性、中性/ 消极这三个情绪二分类 场景平均准确率分别达到 91. 8% 、93. 3% 和 85. 1% ,为情感脑电识别研究提供了新的思路和方法。

    Abstract:

    The affective brain-computer interface (ABCI) aims to provide a channel for emotional communication between people and external devices. Emotion electroencephalography (EEG) recognition is the most basic and key part of the ABCI system. To adaptively select the optimal combination of spatial electrodes and frequency bands to optimize the emotion EEG feature and improve the classification effectiveness, an adaptive optimized spatial-frequency differential entropy (AOSFDE) feature is proposed. We design an importance measurement method of spatial electrodes based on the relative entropy. According to the importance of various spatial electrodes, the most important spatial electrodes are selected automatically. The sparse regression algorithm is used to optimize the differential entropy features in multiple local spatial-frequency domains. The emotion EEG database (SEED) provided by Shanghai Jiao Tong University is utilized for experimental analysis. Results show that the proposed AOSFDE method can effectively improve the recognition accuracy. For 15 subjects in this dataset, the average recognition accuracy values of positive / negative, positive / neutral and neutral/ negative binary emotional classifications are 91. 8% , 93. 3% and 85. 1% , respectively. The proposed algorithm provides a new idea and method for emotion EEG recognition.

    参考文献
    相似文献
    引证文献
引用本文

苗敏敏,徐宝国,胡文军,王爱民,宋爱国.基于自适应优化空频微分熵的情感脑电识别[J].仪器仪表学报,2021,(3):221-230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码