基于语音频谱图像特征的人体疲劳检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN912. 3 TH701

基金项目:

国家自然科学基金(51965021,52062014)、江西省自然科学基金(20202BABL202017)项目资助


A human fatigue detection method based on speech spectrogram features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了将语谱图的可视化图像分析手段有效应用于人体疲劳检测,提出一种基于语音频谱图像特征的人体疲劳检测方 法。 首先,在研究分析人体疲劳对语谱图影响机理的基础上,对语谱图进行基于听觉感知理论的 Mel 频率拉伸变换,以突出易 受疲劳影响的感兴趣区域。 其次,将 Mel 频率拉伸后的语谱图分割为 24 个相互交叠的临界频带子图,并从各子图在 4 个方向 上的灰度共生矩阵中分别提取了 15 种纹理特征参数用于语音疲劳信息的定量表征。 最后,建立多子带疲劳信息融合的人体疲 劳检测模型,针对各临界频带子图特征分别设计特征层分类器进行分布检测,并通过决策层的多分类器融合判决得到最终的疲 劳检测结果。 实验结果表明,该方法所提取的语音频谱图像特征具有比传统声学特征更好的疲劳表征能力,同时该方法的人体 疲劳检测效果也优于现有的语谱图特征识别方法。

    Abstract:

    To apply the visual image analysis of speech spectrogram to human fatigue detection effectively, a human fatigue detection method based on speech spectrogram features is proposed. Firstly, the influence mechanism analysis of human fatigue on speech spectrogram is analyzed. The Mel frequency stretching transform of speech spectrogram based on the auditory perception theory is used to highlight the region of interest which is susceptible to fatigue. Secondly, the Mel frequency stretched spectrogram is divided into 24 overlapping critical frequency band sub-images, and 15 texture features are extracted from the gray level co-occurrence matrixes of each sub-image in 4 directions to quantitatively describe the fatigue information. Finally, a human fatigue detection model based on multi sub-bands fatigue information fusion is formulated by designing the feature-layer classifier for distribution detecting the features of each critical frequency band. In this way, the fatigue detection result can be achieved, which is based on the decision-level multi-classifiers fusion decision. Experimental results show that the extracted speech spectrogram features have stronger fatigue classification ability than traditional acoustic features. The fatigue detection effectiveness of this method is also better than the existing spectrogram feature recognition methods.

    参考文献
    相似文献
    引证文献
引用本文

李 响,李国正,邓明君,万 平,严利鑫.基于语音频谱图像特征的人体疲劳检测方法[J].仪器仪表学报,2021,(2):123-132

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码