基于级联卷积神经网络的荧光免疫层析 图像峰值点定位方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH776

基金项目:

天津市科技计划项目(17ZXYENC00180)资助


Peak point location of fluorescence immunochromatography image based on the cascaded convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前荧光免疫层析定量图像峰值点定位易受多种因素影响,导致物质定量准确度低的问题,提出了一种融合目标 检测的级联卷积神经网络(CNN)算法。 第一层级联算法首先使用经改进的 AlexNet 算法对荧光免疫层析定量图像中包含质 控(C)峰和检测(T)峰的区域进行检测和提取。 之后将提取到的图像区域送入第二层级联卷积神经网络中,对 C 峰和 T 峰的 位置进行快速定位。 随后将定位结果输入到第三层级联卷积神经网络中,对上一层输出的 C 峰和 T 峰的定位结果进行精准微 调。 最后输出 C 峰和 T 峰的准确定位信息。 实验结果表明,提出的级联卷积神经网络算法,对荧光免疫层析图像峰值点的平均 定位准确度达到了 96% 以上,提高了峰值点的定位准确度。

    Abstract:

    The peak point location is susceptible to many factors of the fluorescence immunochromatographic quantitative image, which can cause the problem of low substance quantification accuracy. To address this issue, a cascaded convolutional neural network (CNN) algorithm for fusion target detection is proposed. The improved AlexNet is utilized in the first-level cascade algorithm to detect and extract the regions containing the quality control (C) peak and test (T) peak in the fluorescence immunochromatographic quantitative image. The extracted image area is sent to the second-level cascaded convolutional neural network to locate C peak and T peak quickly. Then, the location results are taken as the input of the third-level cascaded convolutional neural network. The fine-tune the location results of the C peak and T peak can be realized from the previous layer. Finally, the accurate location information of the C peak and T peak is achieved. Experimental results show that the proposed cascaded convolutional neural network algorithm can locate the peak points of fluorescence immunochromatography images with the accuracy of more than 96% , and the location accuracy of peak points is enhanced.

    参考文献
    相似文献
    引证文献
引用本文

张 栋,杜 康,韩文念,李秀梅,汪 曣.基于级联卷积神经网络的荧光免疫层析 图像峰值点定位方法研究[J].仪器仪表学报,2021,(1):217-227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码