基于深度网络迁移学习的致痫区脑电识别* .txt
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TP391TH776文献标识码: A国家标准学科分类代码: 31061105202060 .txt

基金项目:

*基金项目:国家自然科学基金(61501283)项目资助 .txt


Focal EEG recognition based on deep network with transfer learning .txt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:致痫区脑电识别能够为癫痫外科手术提供重要的参考价值。提出了一种基于深度网络迁移学习的致痫区脑电识别算法。首先利用连续小波变换(CWT)对脑电信号进行时频分析,获得脑电信号时频图;然后迁移学习AlexNet网络模型,调整网络结构使之适应于致痫区脑电识别,将模型第7层全连接层输出作为脑电信号时频图的特征表示,最后利用支持向量机(SVM)、BP神经网络、长短期记忆网络(LSTM)、基于稀疏表达分类算法(SRC)、线性判别分析(LDA)等分类算法进行特征分类。基于开源脑电数据集采用十折交叉验证的方法对算法进行了验证,比较6种分类器的效果,得到SVM算法的平均特异性为8881%,灵敏度为8807%,准确率为8844%,证明了该方法识别致痫区脑电信号的有效性。 .txt

    Abstract:

    Abstract:Focal EEG recognition can provide important reference value for epilepsy surgery. This paper proposes a focal EEG recognition algorithm based on deep network with transfer learning. Firstly, the continuous wavelet transform (CWT) is used to perform timefrequency analysis on the EEG signals and obtain the timefrequency map of the EEG signals. Then transfer learning is performed on the AlexNet model, and the network structure is adjusted to adapt to focal EEG recognition. The output of the seventh fully connected layer of the model is used as the characteristic presentation of the timefrequency images. Finally, the classification algorithms of SVM, BP, LSTM, SRC and LDA are used to classify the features. In this paper, based on the open source EEG dataset, the 10fold crossvalidation algorithm is adopted to verify the algorithm, the effects of the six classifiers are compared. The average specificity, sensitivity and accuracy of the SVM algorithm are 8807%, 8881% and 8844%, respectively, which proves the effectiveness of the method in focal EEG recognition. .txt

    参考文献
    相似文献
    引证文献
引用本文

曲桂果,袁琦,李彦 . txt.基于深度网络迁移学习的致痫区脑电识别* . txt[J].仪器仪表学报,2020,41(5):164-173

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码