基于深度学习的机器人最优抓取姿态检测方法* .txt
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TP242TH86文献标识码: A国家标准学科分类代码: 51040 .txt

基金项目:

*基金项目:国家自然科学基金(61703012)、北京自然科学基金(4182010)项目资助 .txt


Detection method of robot optimal grasp posture based on deep learning .txt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:服务型机器人在抓取任务中面临的是非结构化的场景。由于物体放置方式的不固定以及其形状的不规则,难以准确计算出机器人的抓取姿态。针对此问题,提出一种双网络架构的机器人最优抓取姿态检测算法。首先,改进了YOLO V3目标检测模型,提升了模型的检测速度与小目标物体的识别性能;其次,利用卷积神经网络设计了多目标抓取检测网络,生成图像中目标物体的抓取区域。为了计算机器人的最优抓取姿态,建立了IOU区域评估算法,筛选出目标物体的最优抓取区域。实验结果表明,改进后的YOLO V3目标检测精度达到91%,多目标抓取检测精度达到86%,机器人最优抓取姿态检测精度达到90%以上。综上所述,所提方法能够高效、精确地计算出目标物体的最优抓取区域,满足抓取任务的要求。 .txt

    Abstract:

    Abstract:The service robot is faced with unstructured scene in the task of grasp. Because of the irregular placement and shape of the objects, it is difficult to accurately calculate the robot′s grasp posture. Aiming at this problem, a robot optimal grasp posture detection algorithm with dual network architecture is proposed. Firstly, the YOLO V3 target detection model is improved, which improves the detection speed of the model and the recognition performance of small target objects. Secondly, convolutional neural network is used to design multitarget grasp detection network, which generates the robot grasp area in the image. In order to calculate the optimal grasp posture of the robot, the IOU area evaluation algorithm is established, which screens out the optimal grasp area of the target object. The experiment results show that the target detection accuracy of improved YOLO V3 reaches 91%, and the detection accuracy of the multitarget grasp reaches 86%, the detection accuracy of the robot optimal grasp posture reaches above 90%. In summary, the proposed method can efficiently and accurately calculate the optimal grasp area of the target object to meet the requirements of the grasp task. .txt

    参考文献
    相似文献
    引证文献
引用本文

李秀智,李家豪,张祥银,彭小彬 . txt.基于深度学习的机器人最优抓取姿态检测方法* . txt[J].仪器仪表学报,2020,41(5):108-117

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码