基于磁光成像的低碳钢WAAM成形件表面缺陷检测与分类*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TG455TH878文献标识码: A国家标准学科分类代码: 5202040

基金项目:

*基金项目:国家自然科学基金(51975410)、天津市自然科学基金(18JCYBJC18700)、天津市教委科研计划(2017KJ080)项目资助


Surface defects detection and classification of low carbon steel WAAM formed parts based on magnetooptical imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:针对电弧增材制造(WAAM)成形件表面及亚表面微小缺陷难以检测和识别的问题,结合图像纹理特征和神经网络提出一种基于磁光成像的无损检测方法,实现低碳钢WAAM成形件表面微小缺陷检测和分类。首先对二次表面精加工后的WAAM成形件进行磁化,并使用磁光成像仪获取成形件表面磁光图像作为试验样本,然后对磁光图像进行预处理,用灰度共生矩阵提取每幅图像的能量、熵、对比度和相关性纹理特征,对比分析无缺陷、熔合不良、凹陷和裂纹4种WAAM成形件表面质量纹理特征,最后通过建立的LMBP神经网络模型对成形件表面质量进行分类预测。试验预测结果表明,WAAM成形件表面缺陷检出率为9733%,表面质量分类准确率可达9133%,验证了所提方法能够有效检测和识别低碳钢WAAM成形件表面微小缺陷。

    Abstract:

    Abstract:It is difficult to detect and identify small defects on the surface and subsurface of wire arc additive manufacturing (WAAM) formed parts. To solve this problem, the texture feature of images and neural networks are both utilized. A nondestructive detection method based on magnetooptical imaging is proposed to detect surface defects of low carbon steel WAAM formed parts detection and classification. Firstly, WAAM formed parts are magnetized after processing by surface finishing. Magnetooptical images of the surface of formed parts are obtained by the magnetooptical imager as test samples. Then, the texture feature of angular second moment, entropy, contrast and correlation of magnetooptical images are extracted by the graylevel cooccurrence matrix after preprocessing the images and texture feature data of four different surface qualities. To be specific, perfectness, poor fusion, depression and cracks are used to carry out comparison. Finally, the classification of formed parts is predicted by LevebergMarquard (LMBP) neural network. Experimental prediction results show that the surface defect detection rate of low carbon steel WAAM formed parts is 9733% and the classification accuracy rate of the surface quality can reach 9133%. These results verify that the proposed method can effectively detect and identify small surface defects on surface of low carbon steel WAAM formed parts.

    参考文献
    相似文献
    引证文献
引用本文

何翔,李亮玉,王天琪,钟蒲.基于磁光成像的低碳钢WAAM成形件表面缺陷检测与分类*[J].仪器仪表学报,2020,41(4):255-262

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码