基于多特征卷积神经网路的运动想象脑电信号分析及意图识别*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TH79文献标识码: A国家标准学科分类代码: 51040

基金项目:

*基金项目:国家自然科学基金(61673336,61901407)、中国博士后科学基金(2019M651066)项目资助


Analysis and intention recognition of motor imagery EEG signals based on multifeature convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:为了准确提取个体运动想象脑电信号的最优时段和频段特征以及有效提高其分类准确率,结合卷积神经网络和集成分类方法提出一种多特征卷积神经网络(MFCNN)算法,对运动想象脑电信号进行分类识别。首先对脑电信号进行预处理,然后将原始信号、能量特征、功率谱特征以及融合特征分别输入到卷积神经网络中得到其训练模型,最后通过加权投票的集成分类方法得到最终的分类结果。并利用2008年BCI竞赛Datasets 2b数据集和实测数据对所提出的方法进行实验分析。结果表明,所提的MFCNN方法可有效提高运动想象识别率,实验中所有受试者的平均分类正确率和平均Kappa值分别为786%和057,为运动想象类脑机接口的应用提供了新的思路和方法。

    Abstract:

    Abstract:In order to accurately extract the optimal time period and frequency band features of individual motor imagery EEG signals and effectively improve its classification accuracy, combining convolutional neural network and integrated classification method, a new multifeature convolutional neural network (MFCNN) algorithm is proposed to classify and identify motor imagery EEG signals. Firstly, the EEG signal is preprocessed, then the original signal, energy feature, power spectrum feature and fusion feature are inputted into the convolutional neural network to obtain their respective training models. Finally, the final classification result is obtained with the weighted voting based integrated classification method. The experiment analysis of the proposed method was carried out using the 2008 BCI competition Datasets 2b dataset and the actually measured data. The results show that the proposed MFCNN method can effectively improve the recognition rate of motor imagery. The average classification accuracy and average Kappa value of all the subjects in the experiment are 786% and 057, respectively. The proposed method provides a new idea and solution for the application of motor imagery braincomputer interface.

    参考文献
    相似文献
    引证文献
引用本文

何群,邵丹丹,王煜文,张园园,谢平.基于多特征卷积神经网路的运动想象脑电信号分析及意图识别*[J].仪器仪表学报,2020,41(1):138-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-11
  • 出版日期:
文章二维码