基于组稀疏贝叶斯逻辑回归运动想象脑电信号分类模型的通道选择与分类新算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH77R318

基金项目:

国家自然科学基金(61967004,11901137,81960324)、广西区自然科学基金(2018GXNSFBA281023,2016GXNSFBA380160)、广西区自动检测技术与仪器重点实验室基金(YQ19209,YQ18107)、桂林电子科技大学研究生教育创新计划项目(2019YCXB03)资助


New channel selection and classification algorithm based on group sparse Bayesian logistic regression motor imagery EEG signal classification model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对脑电信号的通道选择和分类问题,提出了基于组稀疏贝叶斯逻辑回归(gsBLR)的运动想象脑电信号分类模型,同时进行通道选择和分类。首先,对多通道信号进行空间滤波和带通滤波,降低容积传导效应的影响;其次,对每个通道的信号提取具有判别信息的时域、频域以及时频域特征,并进行特征融合;最后,使用gsBLR方法进行通道选择和分类,在贝叶斯学习框架下模型参数可自动从训练数据中估计得到,避免了繁琐而耗时的交叉验证过程。在两个公开的脑机接口(BCI)竞赛数据集和自采集数据集上进行了实验验证,分别获得了8163%、8497%和7647%的最高平均分类准确率;相比其他方法,所提出的方法具有较好的分类准确率和较少的通道数,同时所选通道与神经生理背景更加吻合。

    Abstract:

    Aiming at the channel selection and classification issue of EEG signals, a motor imagery EEG classification model based on group sparse Bayesian logistic regression (gsBLR) is proposed, which can simultaneously accomplish channel selection and classification. Firstly, spatial filtering and bandpass filtering are performed on the multichannel signals to reduce the influence of volume conduction effect. Secondly, the time domain, frequency domain and timefrequency domain features with discriminant information are extracted for each channel signal, and feature fusion is performed. Finally, the gsBLR method is used for channel selection and classification. The model parameters are automatically estimated from the training data under the Bayesian learning framework, which avoids cumbersome and timeconsuming crossvalidation process. Experiments were carried out on two public BCI competition datasets and selfcollected dataset, and the highest average classification accuracies of 8163%, 8497% and 7647% were achieved, respectively. Compared with other methods, the proposed method achieves better classification accuracy and fewer number of channels. At the same time, the selected channels are more compatible with the neurophysiological background.

    参考文献
    相似文献
    引证文献
引用本文

张绍荣,朱志斌,冯宝,余天佑,李智.基于组稀疏贝叶斯逻辑回归运动想象脑电信号分类模型的通道选择与分类新算法[J].仪器仪表学报,2019,40(10):179-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-09
  • 出版日期:
文章二维码