用于分割无损检测图像的改进的抑制式模糊C均值聚类算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

河北省科技计划项目(17273903D)、河北省高等学校科学技术研究项目(ZD2017013)、河北省教育厅重点项目(ZD2018212)、河北地质大学博士科研启动基金(BQ201606)资助项目


Improved suppressed fuzzy cmeans clustering algorithm for segmenting the nondestructive testing image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于无损检测图像灰度分布不均衡,常用的模糊C均值聚类算法不能对图像中的目标与背景进行有效分割,故提出一种改进的抑制式模糊C均值聚类算法(ISFCM)对无损检测图像进行分割。通过对抑制式模糊C均值聚类算法(SFCM)的目标函数融入每一类的总隶属度以均衡化目标像素和背景像素对聚类结果的影响,在构建的新目标函数基础上推导出新的隶属度和聚类中心迭代形式,然后分析了所提算法的收敛性并给出了执行步骤,最后通过无损检测图像对所提算法进行分割实验。结果表明,ISFCM算法不仅能够对灰度分布不均衡的无损检测图像进行有效分割,还扩展了SFCM算法的应用范围,增强了鲁棒性和适应性。

    Abstract:

    As the nondestructive testing (NDT) images have the characteristic of unbalanced grayscale distribution, fuzzy cmeans clustering algorithm cannot commonly used effectively separate the objects from background in NDT images. To solve this problem, an improved suppressed fuzzy cmeans (ISFCM) clustering algorithm is proposed to segment the NDT images. Firstly, the total membership degree of each cluster is incorporated into the objective function of the suppressed fuzzy cmeans (SFCM) clustering algorithm, which can equalize the contribution of object pixels and background pixels on the clustering results. Secondly, the iteration forms of the new membership degree and cluster center are deduced on the basis of newly built objective function. Thirdly, the convergence of the proposed ISFCM clustering algorithm is analyzed and the implementation steps are given. Lastly, the proposed ISFCM clustering algorithm was applied to carry out the segmentation experiment of the NDT images. The results demonstrate that the proposed ISFCM clustering algorithm can not only effectively segment the NDT images with unbalanced grayscale distribution, but also extend its application scope, and enhance the robustness and adaptability.

    参考文献
    相似文献
    引证文献
引用本文

朱占龙,刘永军,赵战民,郑一博.用于分割无损检测图像的改进的抑制式模糊C均值聚类算法[J].仪器仪表学报,2019,40(8):110-118

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码