Abstract:As the nondestructive testing (NDT) images have the characteristic of unbalanced grayscale distribution, fuzzy cmeans clustering algorithm cannot commonly used effectively separate the objects from background in NDT images. To solve this problem, an improved suppressed fuzzy cmeans (ISFCM) clustering algorithm is proposed to segment the NDT images. Firstly, the total membership degree of each cluster is incorporated into the objective function of the suppressed fuzzy cmeans (SFCM) clustering algorithm, which can equalize the contribution of object pixels and background pixels on the clustering results. Secondly, the iteration forms of the new membership degree and cluster center are deduced on the basis of newly built objective function. Thirdly, the convergence of the proposed ISFCM clustering algorithm is analyzed and the implementation steps are given. Lastly, the proposed ISFCM clustering algorithm was applied to carry out the segmentation experiment of the NDT images. The results demonstrate that the proposed ISFCM clustering algorithm can not only effectively segment the NDT images with unbalanced grayscale distribution, but also extend its application scope, and enhance the robustness and adaptability.