基于T-SNE样本熵和TCN的滚动轴承状态退化趋势预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3TN911.2

基金项目:

国家重点研发计划重点专项(2018YFC0807900, 2018YFC0807903)资助


Prediction of rolling bearing state degradation trend based on T-SNE sample entropy and TCN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了能够尽早发现滚动轴承开始出现显著退化的临界状态,精准预测滚动轴承的状态退化趋势,提出了T分布随机近邻嵌入(TSNE)样本熵状态退化特征指标和基于时间卷积网络(TCN)的轴承状态退化趋势预测方法。首先利用TSNE算法提取原始振动信号的低维流形特征,再计算低维流形特征的样本熵作为状态退化特征,最后基于历史状态退化特征通过TCN算法预测轴承的状态退化趋势。实验结果表明,相较于传统特征指标,TSNE样本熵特征指标能够至少提前50 min发现滚动轴承开始出现显著退化的临界状态,且TCN算法的预测误差仅为045%,具有较高的工程应用价值。

    Abstract:

    To early discover the critical degradation status of rolling bearing and predict its degradation trend, Tdistributed stochastic neighbor embedding (TSNE) sample entropy state degradation feature index and the prediction method based on time convolutional network (TCN) are proposed. Firstly, the lowdimensional manifold features of original vibration signal are extracted by TSNE algorithm. Then, sample entropy of lowdimensional manifold features are calculated as the status degradation. Finally, the degradation trend of the bearing is predicted by the TCN algorithm based on features of historical status degradation. Compared with traditional feature index, experimental results show that the TSNE sample entropy feature index can detect the critical status of the bearing degradation significantly at least 50 minutes ahead of time and the prediction error of the TCN algorithm is only 045%. These results have high application values in engineering.

    参考文献
    相似文献
    引证文献
引用本文

于重重,宁亚倩,秦勇,高柯柯.基于T-SNE样本熵和TCN的滚动轴承状态退化趋势预测[J].仪器仪表学报,2019,40(8):39-46

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码