基于BP神经网络的超声表面波定量表征金属表层裂纹深度研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TB553TP183

基金项目:

国家自然科学基金(51675083, 51805072)、中国博士后科学基金(2018M641689)资助项目


Study on the quantitative characterization of metal surface crack depth through BP neural network combined with SAW technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对超声参量目标特征经验拟合方法预测金属表层裂纹深度准确性不高的问题,提出一种基于差异性与最小集合原则优选特征并训练BP神经网络的金属表层裂纹深度的声表面波(SAW)定量表征技术。该技术运用有限元法模拟激光激发SAW过程,提取裂纹引起的反射与透射SAW峰值、平均值等多个特征训练BP神经网络用以预测裂纹深度,实现不锈钢表层深度01~20 mm的20组开口裂纹定量表征。模拟结果表明:裂纹深度预测结果相对误差在3%以内,与经验拟合曲线预测结果相比,准确率提高60%以上。实验采用5 MHz表面波探头采集不锈钢试样表层深度10与15 mm预加工裂纹各20个反射波信号,通过BP神经网络预测的裂纹深度相对误差在01%以内,验证了定量表征技术的可行性与准确性。

    Abstract:

    Aiming at the low accuracy of crack depth prediction in metal surface utilizing the empirical fitting method based on specific ultrasonic signal parameter and object characteristic, based on the divergence analysis and least parameter set principle, as well as training BP neural network, a surface acoustic wave (SAW) quantitative characterization technique of metal surface crack depth is proposed. This technique simulates the laser exciting SAW process with finite element method and extracts the characteristics of peak and mean values of the reflected and transmitted SAW signals caused by the surface crack, which is used to train BP neural network and predict the crack depth. The quantitative characterization of 20 groups of the opening cracks with crack depth of 01~20 mm on stainless steel specimen surface was realized. The simulation results show that the relative errors of the predicted crack depth are within 3%. Compared with the prediction result of empirical fitting curve, the accuracy is improved by more than 60%. Experiments adopted a 5 MHz SAW transducer to acquire 20 reflected SAW signals of two preprocessed cracks of the stainless steel specimens at surface depth of 10 and 15 mm, respectively. The relative errors of the crack depth predicted by BP neural network are within 01%, which verifies the feasibility and accuracy of the proposed quantitative characterization technique.

    参考文献
    相似文献
    引证文献
引用本文

董珍一,林莉,孙旭,马志远.基于BP神经网络的超声表面波定量表征金属表层裂纹深度研究[J].仪器仪表学报,2019,40(8):31-38

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码