基于数据分类重建的风电机组故障预警方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

北京市自然科学基金(4182061)、中央高校基本科研业务费专项资金(2018ZD05,9163116001)项目资助


Fault warning method for wind turbine based on classified data reconstruction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为预警风电机组潜在故障、增强机组出力安全性,基于监控和数据采集(SCADA)系统,提出一种异常数据重建的风电机组故障预警方法。首先,充分利用同风场风机SCADA数据,分别重建输入类与输出类目标机组数据,克服了部分数据信息丢失、数据异常问题;其次,使用提取的代表性数据建立故障预警模型,所得预警模型更贴近机组运行动态特性;最后,采用改进的衰退指标预警潜在故障,直观展示机组阶段性衰退程度。案例研究中使用某风电场SCADA故障数据,并使用3种标准确定所提策略参数设定值,结果表明可至少提前3周预警风电机组齿轮箱潜在故障,验证了所提故障预警方法的时效性。

    Abstract:

    In order to warn the potential failure of wind turbines and enhance the safety of the unit output, a wind turbine fault warning method with abnormal data reconstruction is proposed based on the supervisory control and data acquisition (SCADA) system. Firstly, the SCADA data of the wind turbines in the same wind farm are fully utilized to reconstruct the two types of target unit data of the input and output, respectively, which overcomes the problems of partial data missing and data anomaly. Secondly, a fault warning model is established using the extracted representative data, which is closer to describe the dynamic characteristics of the unit. Thirdly, the improved deterioration degree is adopted to warn the potential failures and intuitively show the phased deterioration of the unit. In the case study, the SCADA fault data of a certain wind farm were used, and the parameter settings of the proposed strategy were determined with three criteria. The results show that the proposed method can predict the potential fault of the gearbox of the wind turbine at least 3 weeks ahead, which verifies the timeliness of the proposed early warning method.

    参考文献
    相似文献
    引证文献
引用本文

刘帅,刘长良,甄成刚.基于数据分类重建的风电机组故障预警方法[J].仪器仪表学报,2019,40(8):1-11

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码