基于WiFi交错信号与深度神经网络的室内人群数量检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN98TH89

基金项目:

国家自然科学基金青年科学基金(61703105,61703106)、福建省自然科学基金面上项目(2017J01500)、福建省教育厅青年科研项目(JAT170107)、福建省高校青年自然科学基金重点项目(JZ160415)、福州大学引进人才科研启动项目(XRC1623,XRC17011)、福建省高校杰出青年科研人才计划(601934)资助项目


Indoor crowd counting method based on WiFi crossover signals and deep neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有室内人群数量检测方法存在适用场景范围受限、检测精度低等问题,提出一种基于深度神经网络的人群数量检测方法,无需被检测人员携带设备便可实现区域内人群数量检测。该方法采用多个WiFi传感节点覆盖室内区域,节点间通过相互探测信号获得交错WiFi链路数据;运用深度神经网络进行特征学习,提取人数变化对WiFi信号影响的关联特征,训练得到该区域人群数量感知模型;将实时采集的WiFi信号送入该模型即可获得人群数量的估计。采用所提方法在一个较为复杂的室内环境进行了实验测试,结果表明该方法能够准确实现室内人数检测,检测精度达到8223%,平均误差仅为037人;与现有其他机器学习算法相比,该模型具备更高的检测精度,适用于多种应用场景。

    Abstract:

    The existing indoor crowd counting methods face the problems limited scenarios, and low detection accuracy, etc. A crowd counting method based on deep neural networks without carrying equipment is proposed in this study. Multiple wireless fidelity (WiFi) sensor nodes are employed to cover indoor areas. The crossover WiFi link data are obtained by detecting signals among sensor nodes. Deep neural network is utilized to learn and extract the features of the effect of the change of the indoor crowd number on WiFi signals. The crowd counting model is trained for the indoor area, and it can be used to estimate the number of crowd by inputting realtime WiFi signals into the model. Evaluation experiments are implemented in a complex indoor office environment. Results show that the proposed method can realize accurate crowd counting with an accuracy of 8223% and the mean error of 037 people. Compared with other machine learning methods, the deep neural network perception model has higher detection accuracy and can be applied to various application scenarios.

    参考文献
    相似文献
    引证文献
引用本文

陈丹,阴存翊,江灏,邱晓杰,陈静.基于WiFi交错信号与深度神经网络的室内人群数量检测方法[J].仪器仪表学报,2019,40(7):178-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-17
  • 出版日期:
文章二维码