一种用于故障分类与预测的多任务特征共享神经网络
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3TP206.3

基金项目:

国家自然科学基金(51875208,51475170)资助项目


Multitask feature sharing neural network used for fault diagnosis and prognosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能故障诊断与预测技术在工业实际中得到了广泛地应用,但仍存在以下局限性:1)将不同退化程度的同类型故障作为多种不同的故障模式进行分类识别,脱离了工程应用的实际;2)基于特定数据训练的诊断模型工况泛化能力差。针对上述问题,提出一种多任务特征共享神经网络,并将其应用于轴承的智能故障诊断与预测。首先,利用卷积神经网络(CNN)构建自适应特征提取器,从原始振动信号中提取深层次特征;其次,同时建立分类与预测的多任务特征共享诊断模型,实现故障类型分类以及故障尺寸预测。最后,通过凯斯西储大学轴承数据集验证了所提方法。试验结果表明:所提方法不但能同时实现对故障类型的分类以及故障尺寸的预测,而且具有较强的工况泛化能力。

    Abstract:

    Intelligent diagnosis and prognosis techniques have been widely applied in modern industrial practice. However, there still exist same limitations as follows: 1) the techniques take the identical type faults with different degradation degree as different individual fault patterns for classification and identification, which is unreasonable in practical industry application; 2) the diagnosis model based on the training with specific data lacks generalization ability under varying working conditions. Aiming at above mentioned problems, a multitask feature sharing neural network is proposed and applied to the intelligent diagnosis and prognosis of bearings. Firstly, the CNN is used to construct an adaptive feature extractor, which extracts deep features from raw vibration signals. Secondly, a multitask feature sharing diagnosis model is constructed for classification and prediction, and the fault classification and fault size prediction are realized. Finally, the proposed method is verified with the benchmark bearing dataset from Case Western Reserve University (CWRU). The experiment results show that the proposed method not only can realize the task of fault type classification and fault size prediction, but also possess strong generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

王震,黄如意,李霁蒲,李巍华.一种用于故障分类与预测的多任务特征共享神经网络[J].仪器仪表学报,2019,40(7):169-177

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-17
  • 出版日期:
文章二维码