数据驱动的地铁车门微小故障智能诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP206.3

基金项目:

国家自然科学基金(61873122)、江苏省轨道交通车辆门系统重点实验室(筹)项目(KN1726)资助


Datadriven intelligent incipient fault diagnosis for subway vehicle door system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车门控制系统是地铁车辆中最重要的子系统之一,其机电部件紧密耦合且存在频繁往复运动,易受环境和乘客干扰,故障率居高不下。为准确检测诊断地铁车门早期故障,本文提出一种大数据驱动的车门故障特征优选方法和基于随机森林(RF)的智能诊断方法。首先,从地铁运营公司累积的大量车门运行状态数据中,提取门扇位置、驱动电机转速和电流信号的多阶段时域特征指标,构建车门运行状态的特征向量;然后,应用距离评估准则,优选对故障敏感度高且对干扰鲁棒性强的车门状态特征,降低特征维度,减少冗余、无关特征的干扰;以优选后的车门状态特征作为RF网络的输入,故障标签作为输出,建立智能故障诊断模型,实现车门系统不同微小故障状态的自动识别。在杭州地铁4号线台架车门上的应用结果表明,所提方法能准确提取早期故障的微弱特征,故障分类模型精度高,故障诊断准确率优于现有其他方法。

    Abstract:

    Door control system is one of the most important subsystems in the subway vehicle. Due to the complex mechatronic structure, frequent open and close movement, and crowded passenger flow environment, high failure rate of door system persists. To accurately detect the incipient fault, a bigdatadriven optimal feature selection algorithm and a random forests (RF) based incipient fault diagnosis method are proposed in this paper. Firstly, multiphase timedomain fault features are extracted from door′s position, drivenmotor′s speed and current signals. Secondly, the irrelevant and redundant features are removed and the optimal fault features are retained by using distance evaluation technology. The selected optimal fault features are adopted as the input of RF classifier. The fault labels are utilized to formulate an intelligent fault diagnosis model. Finally, the fault diagnosis model can realize the online automatic recognition of different incipient faults in the door subsystem. Experiments are conducted on the bench testing door system of Hangzhou line 4. Results show that the proposed method can extract the early features of incipient faults. Compared with several existing methods, the diagnostic accuracy and robustness of the proposed method are greatly improved after optimal feature selection.

    参考文献
    相似文献
    引证文献
引用本文

施文,陆宁云,姜斌,支有冉,许志兴.数据驱动的地铁车门微小故障智能诊断方法[J].仪器仪表学报,2019,40(6):192-201

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码
×
《仪器仪表学报》
年底封账通知