基于弱监督学习卷积神经网络的心脏按压评估
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP306TH825

基金项目:

国家重点基础研究发展计划(973计划)(2013CB227900)、徐州市应用基础研究项目(KC17073)资助


Assessment of chest cardiac compression in convolutional neural network based on weak supervised learning strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的基于加速度波形积分的心脏胸外按压评估方法受噪声和积分时延影响,在计算距离时存在较大误差,评估效果不理想。为此,在弱监督学习策略与波形分割的基础上,提出了一种基于一维卷积神经网络的心脏按压加速度波形识别算法,实验结果表明,一维卷积神经网络达到了994%的正确率,明显优于传统的积分方法和BP神经网络算法。进一步采用GradCAM方法对评估结果进行可视化分析,发现卷积神经网络所关注的特征集中于开始按压至按压到达平衡位置,以及此次按压松手后反向加速度达到最大值至下一次按压开始这2个阶段的加速度波形变化情况。此外该评估模型不再需要对按压距离进行精确测距,因而不受按压遮挡、电磁波干扰等因素的影响,可以实时检测按压是否规范有效,在复杂环境中也具有较高的鲁棒性,在医疗急救领域中具有一定的实用价值。

    Abstract:

    The traditional evaluation method of cardiac chest compression is based on acceleration waveform integration, which is affected by noise and integral delay. A large error is introduced in calculating the distance and the evaluation effectiveness is not ideal. Therefore, based on the weak supervised learning strategy and waveform segmentation, this paper proposes one kind of acceleration waveform recognition algorithm for cardiac chest compression based on onedimensional convolutional neural network. Experimental results show that the onedimensional convolutional neural network achieves 994% accuracy, which is significantly better than the traditional integration method and BP neural network algorithm. Further, the GradCAM method is adopted to visually analyze the evaluation results. The features of convolutional neural network focus on the acceleration waveform changes in the two compression stages of starting to press until the pressure can reach the equilibrium position. The reverse acceleration can achieve the maximum value after the pressing of the hand to the next press start. In addition, the evaluation model does not need to accurately measure the pressing distance. Thus, it is not affected by factors such as pressing occlusion and electromagnetic wave interference. Its effectiveness can be checked in the realtime manner. It also has the feature of high robustness in complex environment and has certain practical value in the field of medical emergency.

    参考文献
    相似文献
    引证文献
引用本文

鲍宇,殷佳豪,刘世杰,杨轩,朱紫维.基于弱监督学习卷积神经网络的心脏按压评估[J].仪器仪表学报,2019,40(5):203-212

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码