基于SSDAE深度神经网络的钛板电涡流检测图像分类研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH701 TG115.28

基金项目:

国家自然科学基金(51465024)项目资助


Research on eddy current detection image classification of titanium plate based on SSDAE deep neural networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钛板电涡流成像检测易受工业现场中的噪声影响,包含噪声的检测图像往往难以提取较好的特征,从而影响分类识别精度。针对以上问题,提出了一种基于栈式稀疏降噪自编码(SSDAE)深度神经网络的钛板缺陷电涡流检测图像分类方法。将稀疏性限制引入降噪自编码器并进行逐层无监督自学习,然后将自编码器栈式组合后添加逻辑识别(LR)层,构建出SSDAE深度神经网络,网络在有监督微调后可实现钛板缺陷电涡流图像特征自动提取与分类识别。稀疏性限制的引入提高了特征学习能力,降噪自编码器的栈式组合提高了深度网络的鲁棒性。实验结果表明,相比其他常规方法,所提出方法不仅在理想环境下有更高的分类准确率,且该方法能有效抵抗噪声,在复杂工况下能更有效地对钛板缺陷进行分类识别。

    Abstract:

    Eddy current imaging detection of titanium plate is susceptible to noise from industrial field. It is difficult to extract effective features from the detected images containing noise, which affects the classification accuracy. To address this issue, a classification method for eddy current detection images of titanium plate defects based on stacked sparse denoising autoencoder (SSDAE) deep neural network is proposed. Sparsity constraint is introduced into the denoising autoencoders (DAE) and the autoencoders perform unsupervised selflearning layerbylayer. Then, the autoencoders are stacked and a logistic regression (LR) layer is added to construct the deep neural network. The deep neural network can automatically extract features and classify eddy current detection images of titanium plate defects after supervised finetuning. The feature learning ability is improved by sparsity constraint, and the robustness of deep network is improved by stack combination of denoising autoencoders. Experimental results show that, compared with other traditional methods, the proposed method not only has higher classification accuracy in ideal conditions, but also can resist noise and classify defects of titanium plate in complex conditions more effectively.

    参考文献
    相似文献
    引证文献
引用本文

包俊,叶波,王晓东,尹武良,徐寒扬.基于SSDAE深度神经网络的钛板电涡流检测图像分类研究[J].仪器仪表学报,2019,40(4):238-247

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-17
  • 出版日期:
文章二维码