电机铜排表面毛刺缺陷检测技术研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41 TH165

基金项目:

国家自然科学基金(61801148,61803128)、黑龙江省自然科学基金(QC2016067)项目资助


Research on detection technology of burr defects in motor copper
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高应用于工业环境下的大型电机转子导线的铜排毛刺检测精度和效率,针对铜排工件毛刺检测存在光学照明不均、毛刺种类繁多、检测识别率不高等问题,提出了一种基于电机铜排毛刺生长区域的缺陷特征提取方法。设计了由硬件模块和图像处理模块组成的毛刺缺陷自动识别系统。在各类毛刺特征分析的基础上,通过基于掩膜的图像优化算法得到待检测铜排标准图像;利用形态学算法构造出图像待检测区域并分割;最后提取缺陷特征并通过毛刺分类算法和针对各类毛刺的阈值去噪方案得到毛刺的判决结果,实现铜排毛刺的自动检测。实验结果显示,算法能快速准确地检测出毛刺缺陷,对铜排加工过程中产生的毛刺具有较高的鲁棒性,检出率接近98%,漏检率为0%,误检率为1471%,能够满足工业检测的要求。

    Abstract:

    This study aims to enhance the accuracy and efficiency of copper burr detection for large motor rotor wires used in industrial environment. The problems of optical illumination, variety of burr species, and low recognition rate of the detection system are considered. To solve these problems, one kind of defect feature extraction method based on the copper burr growth region of the motor is proposed. The burr defect automatic recognition system is consistedof hardware module and image processing module. Based on analysis of burr features, the standard image of the detected objectis obtainedby using the maskbased image optimization algorithm. Then, the image region to be detected and segmented by morphological algorithm is constructed. Finally, the judgement results through classification algorithm and threshold denoising scheme for various burrs are achieved.The automatic detection of the copper burr defect is realized. Experimental results show that the algorithm can detect burr defects quickly and accurately. It has high robustness for detectingthe burrs generated during copper processing. The detection rate, leakage rate and false detection rate are close to 98%, 0%, and 1471%,respectively. The proposed method can meet the requirements of industrial test.

    参考文献
    相似文献
    引证文献
引用本文

范剑英,刘力源,赵首博.电机铜排表面毛刺缺陷检测技术研究[J].仪器仪表学报,2019,40(3):14-22

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-14
  • 出版日期:
文章二维码